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Preface

How does the numan brain and nervous xystem acquire its store
of matheratical knowledge? How does the human organism use
thix store of knowledge once it has acquired it? These are funda-
mente.l questions to which the answers can be of great aid in the
improvement of instruction in matheraatics. Although compara-
tively little is known about the answers, the little that is known
should be studied by every teacher of mathematics on every level
of instruction. Tt is the purpose of this Yearbook to provide some
of this information, and indicate sources for further study.

The title of the Yearbook tells the organizational pattern. Each
chapter dizcusses an important aspect of learning, giving the most
modern theory and research, and then applies this theory to con-
crete learning situations. Tn this way it is hoped that the classroom
teacher will not only be given concrete suggestions, but also a
theoreticnl background upon which to create his own provisions
for better leurning of mathematics. Insofar as teachers find the
materials presented here of value in providing better classroom
learning situations, the hook will have succeeded in its purpose.

This Yearbook was inaugurated by the first Yearbook Planning

Committee of the National Council of Teachers of Mathematics.
“The members were Mr. Walter H. Carnahan, chairman, Miss
Vervl Schult, and Mr. F. Lynwood Wren. The editor is greatly
indebted to them for their help and encouragement in getting
the book organized and under way.

The arrangements for editing final copy, printing, securing per-
mission to use materials, and other business details were numerous
and complox. The efficient aid of the executive secretary, Mr.
Myrl H. Ahrendt, in all there matters is gratefully acknowledged.

The wuthors received much help and guidance from their col-
leaguies in their various institutions of learning. This help, espe-
cially from psychological departiments, ix deeply appreciated and
has contributed much to make the book authoritative. For permis-
sion to reproduce tigures and printed material acknowledgment. is
hereby made to the following persons and companies: E. Heid-
breder: Flizabeth M. Thorndike; Aaron Bakst; H. G, and Lillian
R. Licher: University of Chicago; National Society for the Study

vil




of Education; Princeton University Press; Columbia University
Press; Harcourt, Brace and Company; New' York Academy of
Sciences; American Psychological Association; the Macmillan
Company; The Science Press: Appleton-Century-Crofts; Harvard
University Press; Houghton Mifflin Company; Duke University
Press; Henry Holt and Company; John Wiley and Sons: The
Journal Press; Journal of Educational Research; Longmans, Green
and Company; Thomas Y. Crowell Company; World Book Com.-
pany; Harper and Brothers; University of Chicago Press; Insti-
tute of General Semantics; The Alfred Korsybski Estate; and Ox-
ford University Press.

HowaRD F. FEur

Editor
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1. Theories of Learning Related to the
Field of Mathematics

Howarp F. FEHR

WAYS OF STUDYING LEARNING

THeRrE ure o number «f ways to study the learning process of
human organism. One is purely physiological, that is to study
learning ax physical reactions of the brain, the nervous systen,
the glands and the muscles, as they are acted upon by physical
stimuli. Another method, partly physiological and partly observa-
tional, is to study the way the organism reacts in various situations
<0 as to abstract common elements called laws of learning. It is
recognized thai physical changes are taking place in the organism,
and that xome of these physical changex can be ascribed to certain
actions and reactions of the organism in particular situations, But
the general explanation of the reaction of the organism is given in
terms of the situation, and not in terms of physical changes within
the organism. This procedure is followed by psychologists. A third
method is to ignore all internal physical changes and to describe
loarning purely in terms of introspection and logical considera-
tions. All three methods have provided and are providing new
insight into human behavior, but recentiv the psychological in-
vestigntions have given the most promise of help to the teacher.

What do we know about the physical behavior of the brain? In
the first place, it is composed of more than 10 billion nerves which
are connected by an exceedingly complex network. These neurons
consist of a center or cell body, from which run fibers of two types,
axons which are single strand of various lengths, and dendrites,
which are ramified short fibers. Impulses travel along these nerve
fibres ut rates which have been measured to vary from three feet
to 300 feet per second. The impulse is reloyed from one neuron to
another by a synapse, and the flow of the impulse is in one direc-
tion on!v. The response of each fiber is an “all or none,” that is,
if 1t ix not sufficiently agitated there is no response, but at a
cortain dogree of stimulation the whole response goes forward.
The amount of stimulation necessary for the “‘all or none” response

1




2 THE LEARNING OF MATHEMATICS

varies also from neuron to neuron. Hence any overt action of an
individual, and all actions, involves many, many nerve fibers, and
is dependent upon the number of stimulated neurons.

We also know that certain areas of the brain are related to
certain functions such as sight, information storage, control of the
sy 2pathetic nervous system, and emotional behavior, and that
damage to these parts of the brain interferes with the correspond-
ing functions. There is also evidence that in time, certain parts of
the brain can take over the functions of other damaged parts.

But how the physical behavior of this vast network of nerves
in the brain and nervous system produces the response a® — b? is
(@ = b)(a + b) is totally unknown. How the cells get their infor-
mation, how they transfer it from the sign of a* — b* to one area
of the brain, to another area, to an ultimate response from the
organism of (@ — b)(a + b) is a deep, dark secret. Further, any
attempt to study the physical behavior meets with many obstacles.
To open the brain to observation is usually accomplished by des-
troying the very nerves we would studv. Further, the nerve cells,
axons, and dendrites are exceedingly minute objects, and to see a
synapse at the end of a nerve fiber is exceedingly difficult. At
present, explanation of human actions in ‘erms of physical phe-
nomena within the brain seems very, very remote (23).!

Hence psychologists have resorted to experimental and observa.-
tional procedures to explain what the human brain is, and what it
does. They create certain situations and observe under as con-
trolled conditions as possible the behavior of the organism, and
describe the operation of human learning by the vaious behaviors
that take place. Thus human learning is defined as a change in
behavior acquired through an experience. The learning is usually
directed toward specific goals through organized patterns of exper-
ience. In order to clarify our concept of change in: behavior, we
give several examples from the mathematical feld.

EXAMILES OF CHANGE IN BEHAVIOR

When a student enters a beginning algebra class and is asked,
“What are the two numbers of which the sum is 6, and the differ-

! In this book the symbal (z:y) will be used to refer to page y of reference r
in the numbered list at the end of each chapter.



THEORIES OF LEARNING 3

ence is 17" he behaves as follows: Try 1 and 5; the difference is 4,
no. Try 2 and 4; the difference is 2, no. Try 3 and 3, no. Maybe
there is no answer; try again; 2 and 4; 3 and 3. Oh! Maybe I can
use fractions; 134 and 414, no; 234 and 3}§; there it is. He h.s
solved,the problem, he has reasoned, and he has exhibited a type
of behavior in a given situation, but it is not the goal behavior you
will ultimately expect from his instruction in algebra. Now let us
repeat the same problem three months later. If the student reacts
in the same manner as above, he has not learned anything new in
this situation. 1f, however, he behaves as follows: Two numbers
z and y; sum, ¢ + y = 6, difference x — y = 1 add 2z = 7,
z = 315and y = 214, then his behavior has decidedly changed;
he has learned a new mode of action. His mind proceeds in a
manner entirely different from before. We should set up our goals
of learaing in the mathematical field, in terms of all desired
changes in behavior with reference to numerical, spatial, quantita.
tive, and logical situations.

Another example. At the start of the year in plane geometry,
you give the following hypothesis: A triangle has sides 2 in., 3 in.,
and 4 in. The middle points of sides2 in. and 3 in. are joined by
a straight line segment. Then you ask, ‘‘How long is this segment?”
The student responds by using his ruler, a pair of compasses, and
paper, actually constructing the triangle and segment and meas-
uring the latter. Assuming careful work, the student responds,
“I measure it to be 2 inches.” His behavior ia this case is a result
of his past experience. Three months later you confront the student
with the same problem. If he has learned, his response now is
solely the result of an inner brain reaction. He says, “It is 2
inches, since it must be one-half the length of the third side.” Thus
he has had a complete change in behavior from one involving
perceptual-motor skills to one involving purely concept-relation-
ship.

One task in education is to create such experiences and situa-
tions that will enable a student to reconstruct his behavior towards
goals desired by both himself and the teacher. When we have
accomplished this, we shall have improved our instruction.

[earning thus becomes a developmental process. It is change in
behavior brought about through brain action or thinking. It comes
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about through facing situations that call for making discoveries,
abstractions, generalizations. and organizations in mathematies.
It is problem-solving, for without a problem felt by the organixm,
and motivation toward the solution of the problem, there will
be little learning of mathematies. On this most psyehologies of
learning agree. The disagreenient arises in the theoretical explana-
tion of how the solution comes about.
THE NATURE OF INTELLIGENCK

To what extent is it possible for human beings to change their
behavior? It is quite common in academic cireles to hear such
expressions us, “He does not possess enough intelligence to learn
mathematics,” or “He is a highly intelligent individual.” Intelli-
gence us used in these expressions is that quality whicli permits
an individual to adapt himself successfully to a given situation.
This was one of the earliest definitions of intelligence. However,
if a dog adapts himself to u houschold in a manner to got good
care, we do not say the dog is intelligent (in the sense we apply the
word to human hehavior). There is more to intelligent action than
mere adaptation,

Binet in his early work on testing used the ability to make
judgments as the best description of intelligence. To this end he
constructed many tests devised to measure the ability to make
judgments or choices. Thix has culminated in the construction of
many types of mental tests, and we could deseribe intelligence as
that faculty, or quality, or characteristic which is measured by
the intelligence tests, Intelligence would then be the ability to per-
form mental taxks, to remember, to make generalizations, to form
relationships between concepts, and to deal with abstract jdeas,
The amount of intelligence would be measured by the degree of
difticulty of tasks compicted, of their complexity, of their abstruet -
ness. and of the speed and lack of interference with which the
tasks ure completed.

Dewey in all of his writings has concerned himself with the
nature of human intelligence. A brief summary of his concept
would be: Intelligence ix acting with un aim: it is purposeful
activity. The wetivity must at all times be contre.od by u percep-
tion of all the facts in a given situation and their relationship to
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each other. Even more important in intelligence is the capacity to
refer present conditions to future desired goals and conversely to
refer the poal to the present conditions. Thus to refer counting to
acquiring ot addition facts (as an elimination of a needless time-
consuming process) and to refer the facts back to counting is
intelligence. If we aet without knowing the consequences of our
acts or even considering them, we are unintelligent. A shot in the
dark is not intelligent action. (This is not to he confused with
acting on a hunch; a hunch is usually related to the goal.) If we
make a guess at an answer as a loose stab, and not as a related
action, we may be exhibiting xome intelligence (goal-directed nc-
tion) but it is very imperfect. If, however, we act with an aim
toward changing our behavior to a new desired pattern which is
perceived as dexirable, we are making intelligent action. “Intelli-
gence is the power to understand things in terms of the use made
of them" (3).

It is in this sense that intelligence is the ability to solve problems
—to think--to learn. And thix is more than merely an ability to
think in terms of abstractions which is one kind of intelligence. It
ix alzo the ability to grasp relations in physical or conerete setups
(situations) and to see how to readapt these for more uzeful pur-
poses. Thix hus been referred 10 as a practical or mechanical aspect
of intelligence. .\ technologist has a different tvpe of intelligence
than a theoretical scientist. Ho foresees future conditions in terms
of concerete situations rather than abstract relationshios. Hix type
of intelligence is very important in modern society and should be
developed. It mav be characterized in one way by a space-percep-
tion activity as contrasted with a deductive propositional activity.
Another type of intelligence recognized by Thorndike (16) is zocial
intelligence. Thix is the power to understand people, to get along
with them and to lead them. [t involves personality traits and
actions between humans which relates present conditions to future
desired states of happy. coonerative living, aud vice versa.

In the loarning of mathematics, the power with which an indi-
vidual can make generalizations, abstractions, logical organiza-
tions, and relate these to purposeful action, determines his ability
to progress. As teachers of mathematies, we are interested in this
phase of intelligence. However, as teachers of children, of young




1] THE LEARNING OF MATHEMATICS

men and women, we are certainly interested in the mechanical
and social type of intelligence, and hence must consider all these
types in our study of learning.

A LEARNING SITUATION

To study how we learn, consider your solution to the following
problem: A man in a department store noticing the escalator in
motion, raises the question, “How many steps are there in the
escalator between the floors?"’ He walked down the escalator as it
was in motion, timing the distance between floors. When he
reached the lower floor having walked down 26 steps, it took him
30 seconds; similarly, when he walked down 34 steps, it took him
18 seconds. What is the answer to his question?

What answer did the man find? How did he find it? If you, the
reader, are interested in these questions, if you really want to find
the answers, you are in a learning situation. All your past exper-
ience in mathematics has created a mental set and the type of
problem gives sufficient motivation to send you into action toward
the solution. You now use your previous learning to find a solution.
~—(Before reading further, stop and seek your solution, keeping a
diary of every move you make. Then you can study your method
of obtaining a solution or how you learned in this situation.)

You may have gone directly to the solution of the problem on
your first trial by applying a technique previously learned. In this
case you did not learn, you did not ieed to learn, you merely
recalled a previous learning. But you may have proceeded in one
of the following manners: The difference between the numbers of
steps walked during each of the two trials was 8; the difference in
times was 12 seconds; but what relation has this to the problem?
Here many a student would cease learning because he would have
reached a block in his reasoning without sufficient drive to go on.
However, another student would say, “Is there any relation be-
tween the difference in times and difference in steps traveled? Oh
ves, there is a relation to the motion of the escalator and the
steps move at a rate 8 steps per 12 seconds or 2 steps per second.
Now does this help me?" Again the student may be blocked or he
may return to the problem and think, “In 30 seconds then, the
excalator will move 30 X 23 or 20 steps and the man move 26
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steps. Aha! There are 46 steps in the escalator between floors.”
Now many a student would stop having secured satisfaction with
the answer. But, if he is to have hetter learning h» will check and
analyze his thinking as follows: ‘‘Let me see if this is so. If there
are 46 steps and I go down 34 of them, the escalator must move
12 steps. At a rate of 2 steps per second, it takes 12 + 3§ or 18
ceconds and that's right.”” At this point, having checked a hypothe-
sis, the student may again cease hiz learning. He has all that he
desires. But a sti'l better learner will say: “Now let me see how I
solved the problem. First I found the rate at which the escalator
moved, then I found the number of steps the escalator moved in
30 seconds, and I added to this the number of steps walked. This
is the number of steps in the escalator. In situations where I
know two distances, and two corresponding times, I had better
try first to determine a rate.”

This whole learning leads to a change in behavior. When con-
fronted with a similar situation the student will now act differently
from what he did in solving this problem. Of course, there are
several ways of solving the problem besides this method of arith:
metic. This method was shown to illustrate how we learn.

Barrier to
satisfaction

The learning situation,  APPIying past
providing stimuli learning

Learner, with drive,
wan s, heeds, sets,
and motives, all

of wiich set him
into action

Reduction in
variability of
goal behavior

e

The accompanying diagram similar to that given by Dashiell (2)
ran be taken as the starting point in the study of how we learn.
At the start of learning or readjustment of behavior, there must
be a situation in which the student feels a need. A need is a feeling
of the organism for sormething which is absent, the attainment of
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which will tend to give satisfaction. The situation is sucl, that the
student is motivated to satisfy the need. This creates tensions and
drive within the organism which impel it towards it goal. Thus
the learner is =purred to physical and mental action, or making a
response. The first response often does not load to the goal; he
runs against a barrier. If the motivation to learn is strong enough,
the learner seeks wnother response or series of responses. One after
another of these resvonses may: fail to lead to a solution. but tinally
he selects a path of action that reaches the goal. He lhas solved
the problem; he is ready to readjust his total behavior in this
situation. He may go over the solution, to make the meaning and
structure more precise, and his formulation more articulate; to
make the whole situation more highly differentiated from previous
learning, and more generalized, until ne has developed a new pat-
tern of behavior that will function in new problems containing
the same or similar situations. He has learned.

Each of the several »sychologies of learning has its own explana-
tion of the way the learning goes from need to goal. That these
theories do conflict at a number of points should not concern us
too much. If the application of one of the conflicting theories
proves more useful for our purpose in a given situation. and appli-
cation of another theory in another, we shall use each as it fits the
occaxion. Until psychology develops into a more significantly uni-
tied, scientific theory we must do this. Physicists do this in the
the study of light where both the wave theory and corpuscular
theory are applied, giving consistent results in some instances and
contradictory rexults in others, Finally the areas in which all of
the theories are in agreement will he especially important for our
study of learning. Here we <hall briefly examine what three theo-
ries, association. conditioning. and field psychologies say about
leorning,

END PRODUCTS OF LEARNING

In the learning of mathematics, a student is expected to do
evervthing from handling concrete objects in counting to making
abstract logical deductions with the use of symbols. There exists
a sort of hierarchy of end products of learning in which we strive



THEORIES OF LEARNING 9

for the highest level. One of the simplest types of human learning
is a sensory-motor skill. The response is practically automatic once
it is learned. This is illustrated in teaching a child how to use &
pair of compusses to draw a circle.

On 2 slightly higher level we have perceptual-molor skill learning.
T'his can be characterized as learning which is applied immediately
to a perceptual pattern. It is illustrated in the learning to use a
protractor to measure an angle and a ruler to measure a line
segment, or in drawing a geometric figure.

The next type of learning which occupies a large part of the
school activities is mental association. Th:s is the type of learning
which gives the child his store of number facts, names of algebraic
terms such as exponent, coefficient, binomial, the names of geo-
metric figures. It includes vocabulary learning.

While a student may learn to recognize an exponent, coefficient,
or median of a triangle, he may not fully comprehend these objects
of thought. For this purpose he must learn concepts. How concepts
are learned in mathematics is the topic of an entire later chapter.
When a child has a mental image of a thing and can relate it to
other things through definitions, laws of operation, application, or
generalizations, he does a great deal more than mere identification
through association. ~

A final end product of learning, of concern to mathematics
teachers, ix problem-solving as illustrated in the example in a pre-
vious section. Here all of the other end products are brought to bear
in making hypotheses, judgments, organizing evidence to give solu-
tions. and forming structures of knowledge such as pure mathe-
matics. The chapter in this book on problem-solving is particularly
concerned with aiding the mathematics classroom teacher to de-
velop this type of learning on the part of his students.

It =hould be noted that while the end products appear Huite
distinet in form, vet their learning has in common the eleme .ts in
the learning diagram. In learning to use a pair of compasses for
eaiunple, there must be motivation, there will be motor movements
which will not give the desired virele, then a correct use of the hand
and fingers comes forth, tinally the learner will try this successful
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technique until the variability has been reduced to a desired level
of manipulative gkill.

ANIMAL LEARNING

Conditioning as a theory of learning grew out of laboratory
studies of animal behavior. In most of these experiments, the
animals were restricted or constrained so as to be unable to avoid
stimuli. The reward or punishment was in most ~ases the same,
an electric shock or food, respectively. Since for most animals
food is a strong incentive, it was easy to condition the animals and
to have them react in a given manner to a given sign as a stimulus.
The animal thereafter did what he had been stimulated to do and
it was said that the animal had learned.

Cole and Bruce (1) characterized two levels of freedom in animal
learning, (a) when the animal is almost totally restrained in a
harness and free to move only one or more legs, and (b) when the
animal is confined in a cage or maze but free to move about within
it. In the first case the animal learns by responding to a stimulus;
in the second by selecting from random uctivity those responses
that lead to satisfaction. In neither case can the apjmal explain
why he behaves the way he does.

On a higher level of animal learning, Kohler (9) described how,
confined in a cage, an ape could piece together two sticks inside
his cage, and reach outside the cage G “crape food to within reach
of his arm. The ape had previous experience with using a stick as
a scraper, but not with putting two sticks together. The ape
learned the latter by accident or by random error, but having
learned it, he had a flash insight as to its use in getting food.

Animal trainers use the method of conditioning in training their
subjects, using a lash and food for punishment and reward. Even
fleas and worms can he shocked into behaving as we would have
them behave. The questions for the teacher are: Shall we use the
techniques of the animal trainer in our classes, imposing the neces-
sary restraints, with accompanying punishrient and reward for
failing or successful responses? Or shall we permit freedom of
learning experience? Or are both techniques of value depending on
the time and the nature of the learning 2

*See film “Willy and the Mouse,”” 16 mm., 11 min,, bluck and white. Teaching
Films Custodians, 25 West 43 Street, New York City.
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In the following description of theories of learaing, it will be well
to recall at all times the limitation of applying animal learning
theory to the learning of mathematics. Thorndike, and many
others since, in their experiments on animals, conclude that they
do not learn by reasoning or by social imitation. They learn only
by physical doing. They do not develop a culture, or transmit their
culture from generation to generation. They do not speak, they
do not use symbols, and they communicate only by signs, where
by sign is meant the stimulus for a fixed response. In contrast,
mathematics is learned by reasoning, by the use of symbols, and
by the transmission of cultural patterns. We recognize that the
learning of infants by reproof and reward is the same as the con-
ditioning of animals. We also recognize that much that we learn
in the early stages of mathematics is learned by doing, and to this
end we should examine what conditioning theory has to offer.

CONDITIONING

To enter into a detailed discussion of the theory of the various
schools of psychology is beyond the purpose of this book. The
interested teacher can obtain this by studying the literature in the
bibliography appended to this and successive chapters. We shall
state the main principles and characteristics of each of the psy-
chologies and illustrate these with applications to mathematics
learning.

Conditioning, with its emphasis on stimulus and response, was
one of the first psychological theories carried over to human learn-
ing and still either consciously or unconsciously guides the teaching
patterns in many of our classes. Since we cannot tell the difference,
by examining the brain and nervous system, between a boy who
gives a correct response to a problem and one who does not, we
resort to predicting from observing what each boy does (his re-
sponses) and the situation that brings about his responses (his stim-
uli). Evidently the boy with an incorrect response is in a situation
with unfavorable stimuli, which is different from the situation or
stimuli acting on the boy who gives the correct response. If the
outside situations are the same, then we can predict the inner
(inside the organism) stimuli are different.

The fundamental principle of conditioning as given by Guthrie
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(13:23) ix: a stimwdus pattern that is acting at the &me of a response,
wil, if it vecurs, tend to produce the same response. According to this
theory we learn only what we do in a given situation. We learn
only our reactions, our responses. To bring about learning we, as
teachers, must induce our students to follow certain mathematical
patterns or behaviors, at the same time that they are confronted
with stimuli. These stimuli hecome the signals for the mathemat-
ical behavior, und when this has been done, the signal replaces
the inducement, that is, the response tends to come forth with
the signal thereafter and learning has taken place.

Thus the learning of the addition facts, under this theory, can
be brought about by having children combine groups, for example
placing 3 chairs and 4 chairs in a row. At the same time the
children are confronted with the stimulus 8 + 4 and the response
7 is given. Thereafter any stimulus pattern similar to 3 + 4 will
tend to evoke the xame response 7. Thus the child ix learning what
he ix doing at any given tinie.

We can learn incorrect responses as well as correct ones, and in
this case it ix necessary to break down the incorrect response. If
an algebra student says (¢ + b)* = a? + b, we must remedy the
situation. To do thix, conditionists use associative inhibition in the
following manner: present the signal (¢ + b)? and along with it a
stimulus for inhibiting the incorrect rexponse (a teacher’s disap-
proval—no, no; or the correct response, «* + 2ab + b* are all
inhibitory stimuli). After sufficient repetition the incorrect re-
sponse will be forgotten. In this case forgetting is failure to respond
to a signal and it is due to new associations formed, that is, learning
to do something else that is more desirable.

In general, conditioning has as its basix for learning:

1. The making and breaking of habits, the acquisition of skills.

2. The response to a pattern of stimuli is conditioned. We learn
what we are doing. We learn incorrect responses (errors) as well
as correct responses.

3. New responses result from conflict anu inhibitory stimuli.

4. Learning occurs normally in one conditional response. The
need for repetition in skill learning ix that a =kill is not simple, but
it is a large collection of habits.

n. Learning best takes place when u desired response is asso-
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ciated with appropriate signs, gestures, mathematical symbols,
and words that act as stimuli for the desired action.

¢ Since we learn what we do, we must be free to act. Hence
g ng takes place best in a free situation, not in a forced and
he  sed activity.

It 15 easy to see under these principles how rote learning and
fact learning can be brought about. It is rather difficult to see how
these prineiples aid in learning to solve an original problem in
geometry or algebra. For this latter purpose the theory takes re-
course to trial and error which is explained better under connec-
tionism.

CONNECTIONISM

The fundamental characteristic of connectionism is the bond
established between a situation and the response made by the
organism. These bonds become unified and patterned through se-
lection (trial and error) according to certain laws of effect, exercise,
readiness, and analysis.* The degree of learning to which the
organism can aspire is largely determined by its inherited qualities.
Ax the organism matures, it develops connections (habits and
<kills) which must be practiced to achieve permanence. The more
complex the acquired bonds can become, the greater is the capacity
to learn mathematices.

The law of effect has particular interest for learning mathe-
matics. It savs: A bond is strengthened or weakened according as
satisfaction or annoyance atlends its exercises, and reward upon
siecess is the most potent factor for insuring learning. If this is so,
we learn. practice, and have an interest in those things which are
pleasurable. Thus, the first experiences a pupil has in mathematics
should be simple enough to insure successful results and should
be accompanied by reward in the form of praise or encouragement.
Start right. and practice. Under connectionism some adherents say
it would be detrimental to learning to allow a student to flounder
about or to make mistakes. Others, patterning their belief on

3 These laws are stated by Sandiford (13:111). While in the early formation of
his theory of learning, Thorndike states these as specific laws. He and his followers
later amended these statements to serve us descriptions or characteristics of

learning rather than as laws They should be thought of in this latter aspect in
thiy hook.
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animal experiments, say the initial experic.ace should be entirely
free to permit a choice of any trial, no matter how blind. Qut of this
experience should come direction of later efforts. When a correct
k )nd has been established, as for example ¢"-a™ = a"**, immediate
and frequent repetition will strengthen the bond and give greater
probability of its functioning in a similar educational situation at
a later time. So we should drill repeatedly on the thousands of
facts throughout the sequential learning of mathematics.

The law of exercise says: When a connection is made between
situation and a response, the strength of the bond 1s increased; when
the connection is not made over a period of time the strength of the
bond is decreased. Thus in learning to solve a quadratic equation
by the use of the formula, the oftener the equation is accompanied
by the proper use of the formula, the stronger the bond, and in
later appearances of quadratic equations, the formula is more apt
to come as a response. Further, the sequence of operations in
applying the formula—equating the function to zero, determin-
ing the coefficients, substituting, simplifying the result, checking-
form a belonging sequence, the repetition of which accompanied by
success or other reward promotes learning.

The law of readiness says: When a bond is ready to act, to act
gives salisfaction, not to act gives annoyance. When a bond is not
ready to act, and 1s made to act, annoyance is caused. Thus to
attempt to make a child form addition facts or learn the multipli-
cation table, when his organism is not ready to act, is to cause
dislike, and to interfere with later learning of the arithmetic. If
a child cannot substitute 10 pennies for a dime in a practical
subtraction of 23 cents minus 15 cents, then he is not ready to do
subtraction involving borrowing (changing a ten to ten ones) and
to force him to do the abstraction would interfere rather than aid
his later learning of the process.

The law of analysis (similarity and dissimilarity) says: When «
given response has been connected with many different situations
which differ in all respects except one common element, the response
becomes bound to that element. In later situations totally different
from the previous situations, the presence of this common element
will tend to evoke the given response. This law is closely related
to trial and error learning or problem-solving. A child is confronted



THEORIES OF LEARNING 15

with three blocks and one block put into a single group, and hears
or gives the response four Then two apples and two apples, with
the same response; then various patterns of four objects of various
kinds, all with the same responses. In all cases the situation is
different except for the fourness. The law of analysis says that in
any later complex situation the recurrence of fourness will evoke
the response four. This is how a child learns four. Thus analysis,
in the sense used here, fosters learning. .
Under analysis, trial and error is not a befuddled, blind chance
affair. On a given trial we do not get a desired response so we
discard the mental path we used and select another path to our
goal. We do not return to unsuccessful paths (errors). Thus trial
and error is deliberate choice. Each succeeding trial takes less
time until finally we solve the problem. A permanent bond is then
formed between the stimulus and the goal and in later different
situations in which the stimulus occurs (along with many other
elements) this goal response will come forth. Thus the § — R,
wt — b — (@ — b)(a + b), as a desired learning should be taught
in many different situations involving a* — b* as a common element
but always with the same response (a — b) (a + b). Then when the
right triangle occurs with hypotenuse r and one side z, the situa-

tion 2 — z? should evoke V(r — z)(r + z) as the remaining side.

The law of analysis indicates that all complex learnings should
be analyzed into simple elements, and then taught or presented
in a sound, pedagogical order. If you wish to learn how to add
a b to ¢;d, analyze every step involved—the definition of a frac-
tion, changing a fraction to an equivalent fraction, defining a
common denominator, finding common denominators, changing
fractions to common denominators, the rule of adding numerators
—-then drill on the process until it is mastered. This is the way
much of our mathematics is to be learned.

The recent war and the present mobilization are focusing our
attention on knowledge as a tool. The goal of learning is perform-
ance. To this end we have stressed the learning of facts and skills
and connectionism has been the prevailing psychology. Under this
theory our whole program in mathematics has been largely con-
cerned in getting students to do their operations quickly and ac-
- curately whenever they occur. Problem-solving in mathematics is
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reduced to a method of steps to be followed in a belonging
sequence, from step one (read the problem) to step n (check in
the original problem) which, if mastered, will automatically lead
to the solution ut the problem Drill is the keynote to achievement.
If the multiplicity of facts and skills becomes so great that it
finally overwhelms the learner, he has reached the limit of his
inherited capacity. With sufficient capacity one can learn all the
mathematics as a set of sequentially ordered and related facts.

The following geometrical original may be used to illustrate how
connectionixm leads to a solution. In the triangle shown, 44’
and ('C" are medians. These are stimuli which evoke the response
A" and (" are mid-points of the sides.) 4.4’ and CC” meet at .
(This evokes the response that AG is 2344’ or (74" is AR
is the mid-point of AC. A’B’ meets ('(" at k. What part of AABC
is the AA'GR?

The student begins his goal-seeking by trial and error: A A'GR
is a part of AGAC which inturnisapartof AAA'C. But AA4'C
ix 2 of AABC. (This is a transfer of an identical element in
many previous problems in geometry.) What relation has AGA'C
to A1.A'C°? Here the response A'G s 154 .4 may be forthcoming
tand if it is not, the student may he given a cue that suggests
this previous leurning). Then AA'G(" is 14 of AAA'C and thus
it is 'y of AABC. (The student evokes the conditional response
Lyof 13ix 14.) Now how can I find what part A A’GR is of AGA'C?
Since vertex A’ ix common, he thinks of bases GR and GC. This
evokex drawing an altitude from A’, but this seems to complicate
the figure and this trial ix rejected. Finally the student says, “I
can’t find any relation.” The relation of GR to GO and RC does
not come forth because he has never had this response in his past
learning. The goal is at his door but he fails to make the connec-
tion.
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What usually happens is the abandonment of this procedure
and a search for another way. He says, AAC'G is also 1§ AABC.
Are AA'GRand AACG related? A’B’ is parallel to .1 B. (The past
learning of a line joining the mid-points of two sides of a triangle
evokes this response.) Immediately the pattern of similar triangles
AC’G and GR A’ is recalled since this is a very common learning.
Similar triangles can bring forth many responses but the common
element here ix area and this recalls the fact that areas of similar
triangles are in proportion to the square of their corresponding
sides. Side G A corresponds to GA’ and their ratio is 2 to 1. Squares
bring forth 4 to 1. Then 4’GR is }Y{AAC'G which is 1§ AABC.
The numbers }{ of 14 finally give 144 as the solution. Under con-
nectionism, the answer !4, would be given at the beginning of the
problem, and it is the path from the given to the conclusion that
is sought, not the discovery of the relation !34.

Of course, in the above, other unsuccessful trials may have been
made and then discarded, until the path to the goal is made. The
student then repeats his solution several times, each attempt tak-
ing less time until he has made the solution readily available for
further use in future learning situations.

The reader, no doubt, can supply many similar examples from
arithmetic, algebra, trigonometry, or mathematical analysis. The
principal characteristics of this theory of learning are:

1. Thinking back to similar situations to find a particular re-
sponse that worked previously; the transfer of identical elements.

2. Trial and error, discarding unsuccessful paths (responses);
avoiding wrong responses.

3. Each complex situation is to be broken up into a series of
simple elements arranged in a sequential order. Each simple ele-
ment is mastered separately. The seriated set of mastered ele-
ments make up the whole.

4. After the whole solution is obtained, repeat and drill until
the solution is sufficiently strengthened (conditioned) for later re-
call.

5. Reward successful learning of desired goals.

It should not be assumed from the foregoing discussion that
connectionism was not concerned with organized systems of re-
lated knowledge. Quite the contrary, Thorndike consistently in-
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sisted on organization and interrelatedness in learning. He said:

“Arithmetic consists not of isolated, unrelated facts, but of parts
of a total system, each part of which may help to knowledge of
other parts, if it is learned properly. . . . T'ime spent in understand-
ing facts and thinking about them is almost saved doubly" (17).

“Knowing should be not a multitude of isolated connections,
but well ordered groups of connections, relaied to each other in
useful ways .. .a well ordered system whose inner relationships
correspond to those of the real world .. ."” (18).

“Every bond formed should be formed with due consideration
of every other bond that has been or will be formed; every ability
should be practiced in the most effective possible relations with
other abilities” (19).

If connectionism is held to be not adequate, it is not for its
objectives, but in its means used to secure the objectives. Through
its emphasis on the detailed analyses of every mathematical proc-
ess Into a large number of serially related bonds to be practiced,
the ultimate outcome of fundamental concepts, generalizations,
and organizations frequently failed to materialize. ‘“The forest
could not be seen because of the trees.” Recently psychelogists
are developing a more adequate explanation of learning through
which understanding and well-organized patterns of knowledge
come to the fore. The results of their study are now considered.

FIELD THEORIES

A major desired outcome of school education is an ability to
solve problems. We are determined that this ability will be per-
manent and grow stronger. While we learn many facts and skills,
it is the developing of the process by which they were learned
that is as important as the material learned, for it is this procedure
that will enable us to “go learning,” to solve new problems. The
goal is thus to learn how to learn.

It is in this aspect that field theories differ most from other
theories of learning. In conditioning, the ceiling of learning is dic-
tated by the inherited capacities of the organism. In gestalt the-
ory, the inherited capacity is increased (modified) within limits
by training. There is a body of mathematical knowledge that,
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regardless of the capacity of the !~arner, could never be acquired
without appropriate prior physical symbolic and linguistic experi-
ence. When this experience is acquired the learning ability rises.
Thus experiencing and vocabulary building can increase the .a-
herited capacity of the organism to learn, and they become im-
portant elements of the learning process.

Experiencing a situation and finally understanding the situa-
tion calls for a study of the whole of it, rather than a detailed study
of the individual elements of the situation. It is only as the rela-
tion of a part to the whole is sensed that a solution of a problem
can emerge that will be permanent. This is one of the fundamental
principles of field theory: Always consider the whole situation in
responding. It is not how many facts you know about a situation
(a geometric original or a problem in installment buying) but how
much relatedness in all possible ways there is between the facts
ard the whole of a situation. For example, a median is not only
a bisertor of the opposite side of a triangle, but of every line seg-
ment in ‘he triangle parallel to this side.

L NN

When the various elements of & situation are grasped in their
relation to the whole situation, insight occurs. Insight is thus the
final outcome (behavior) of a given situation. Before insight lead-
ing to the solution of a problem occurs, there may be trial and
error, but it is not the type explained by connectionism which
rejects false leads, but rather an analysis of the relationship of
parts to the whole and the seeking of those relationships which
give the complete understanding of the problem. According to con-
nectionism the rejection of each false lead (error) brings one closer
to the level of his goal; according to gestalt each analysis helps,
but there is not necessarily a closer approximation after each analy-
sis, only a larger number of relations. When all the relations dis-
covered shape into an organized pattern, there is insight and the
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problem is solved. The following diagrams illustrate these two
points of view,

trial goal configurational goal

! m _ learning /'_—

L sSuccess — elimination -

s of false leads s Mj‘m :l‘:t?olm “
Number of trials Number of analyses

EXAMPLES

A study of two problems may aid in clarifying the concept of
total configuration and insight. Corsider the geometry original
given on page 16. The problem is, “\What relation has the area
of AGA’R to the whole AABC?" A gestaltist would not give the
answer }44, but expect the student to discover it. According to

4

3 a [

gestalt, the first emphasis is to be on the whole figure, and its
related parts. We are to study the relationship of the whole to its
parts, and of the parts to the whole. Looking at the figure this
way, we draw the remaining median BB’ and note:
AAGB = AAGC = ABGC = {AABC
AB'GA’ ~ AAGB (They look similar, and A'B’ | AB)
AB'GA’' = L{AAGB = 1{,AABC
AGRA’ = AGRB' = $AGA'B' = 14,AABC.

As soon as the pattern AGRA’ = 14AAGB = 1l4,AABC

emerges (or a similar pattern), insight has occurred.
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Another approach is to draw all the medians and then analyze
the figure. In this case the parts are in closer relation (in a nar-
rower field) than in the above figure. and almost by ftash you see

AA'B'(" = V{AABC; AA'GR = 1 AA'B'C.

It is also significant that the latter figure has within it elements
of a new learning situation, which was not apparent in the other
figures. Real creativeness lies not o much in the solution to a
problem, as it dves in the xignificant new problems that emerge
nut of a solution. This is in part the element of generalization
which gestalt psychologists hold essential for permanency of learn-
ing and transference to new situations. In the figure, the relation-
ships evolved suggest drawing SR, ST, TR, and continuing on in
this manner. Then AGW R has the same relationship to AA'B'"
as AGRA’ had to AABC. This immediately suggests two infinite
series of areas, 1, 14, !¢, Ys4, - + - and 1§, 144, Y66, J84, « -
This aspect of discorery and extension by generalizaiion is a major
aspect of configurational learning.

Finding the rate of interest charged on an installment loan illus-
trates several of the types of learning. Consider the problem: A
television set can be bought for $300 cash, or for $60 down and 6
monthly payments of $45. What is the approximate rate of interest
paid on the installment loan? At times a formula is given and the
students substitute. They are conditioned to do this by the recall
of the formula, say

- 2l . 2(12)(30)
Pin+ 1’ 240(6 + 1)

and the knowledge of what each letter represents. They substitute
numerical quantities, carry out the operations and give the result.
Thus the desired end response of learning (a formula) is given with
certain stimuli and the association is made. It is then practiced
in sufficiently different situations to secure its desired strength.

Those who believe in conditioning would analyze the problem
into its separate parts and arrange them in a belonging sequence,
perhaps (a) finding the total installment price, (b) finding the cost
of the installment plan, (¢) finding the amount borrowed, (d) find-
ing the size of each monthly principal payment, (e) finding the
total time of the loan, (f) finding the interest rate. Each of these

= 42.86% ,
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elements would be practiced separately until known, and then in
the order given until known. A student who had finally learned
would make the proper series of related stimulus-response actions
and get the answer. His actions would probubly be as follows: (a)
60 + 6 X 45 = $330, the total cost; (b) $330 — 8300 = $30, the
cost of the plan; (c) $300 — $60 = $240 the principal borrowed;

240 . 14+2434+4+5+6
(d) =5~ = $40, eachprincipal payment; (e) =1 ;:9. =

= 137 years, the time of the loan; (f) 30 = 40 X ¢t X 7{or¢ =
42 869, the interest rate.

In field theory, the words configuration or gestalt (form) are
constantly used. For this reason, the psychology using field theory
is referred to as gestall. A configuration is a pattern of all the
elements entering into the perceptual field of the learner. If the
elements of the field are reorganized, a new pattern or configura-
tion is formed. While the elements may be abstract, it was fre-
quently found helpful to represent the configuratien by a georet-
ric form, in which each of the geometric elements symbolizes an
element of the field, and the positions of the geometric elements
indicate the relationships of the field elements to each other and
to the total situation. More generally, however, a gestalt is to be
considered the total situation with which the learner is confronted.

The field theorist would try at the start to bring all the elements
of the problem together. He would not hesitate to use a geometric
drawing to aid the mental organization of the elements. The fol-
lowing figure (derived with the help of the students) is the initial

step. (Several other configurations are possible.)
Installment Price

—
Cash Price
A
// ) Amount Borrowed

60 40 40 40 40 40 40

Cnoat Dawn' 1 4+

of 2 4
i Payment

Moa% I+
y’ wae 4 +
©in foreq s+ lo=
21 months
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A study of the diagram allows a simpler rephrasing of the prob-
lem. If 830 ix paid on a loan of $40 for 21 months, what is the
interest rate® .\ student may now recall the =imple interest for-
mula and solve the problem. Having done this prcblem, and sev-
eral like it, he would then generalize (pattern, structure, organize)
his <olution and obtain as the end result, the formula. The for-
mula is the result of his learning, not the starting point.

FURTHER ASPECTS OF FIELD THEORY

When a field theorist says **The whole is greater than the sum
of the parts.”” he is not referring to the physical characteristics of
a situation. but the concepts and relationships involved. One can
learn (a) a median is ... (b) a line joining the mid-point of two
sicdex of a triangle is . . . (¢) a parallelogram is . . . (d) diagonals of
a parallelograni . . as four relationships. Now put them together
in a whole and we also have (e) medians meet two-thirds. . . . Thus
any whole learning has within it concepts and potentialities for
further learning that are greater than the sum of each of the ele-
ments that make up the whole.

Further, it is easy to recognize that if learning is to be extended,
each whole is only a part of a greater whole. By total configuration,
then. i meant all the elements that come within the perception
of a given situation. learning is the integration and reorganiza-
tion of the elements of a given situation into a mental pattern.
When the pattern is finally organized, it is done swiftly, in a flash.
The rest is a matter of progressive clarification or smoothing the
performance. which is the function of drill or practice.

In summuary, the various studies in field psychology explain
learning by the following characteristics:

1. Initial learnings come from experience (physical and mental
experiments), constructive methods, not from definitions. It is the
dymamic aspects of events that aid learning. Whatever is to be
learned must have its roots in some challenging, problem-present-
ing situation.
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2. All parts related to the learning situation must be brought
into focus to see the problem as a whole. Scattered elements or
isolated details prevent insight.

3. The analysis and obtaining of relations of parts to whole and
whole to parts, the recalling of past patterns of learning, and
blending of the given elements permit the restructuring of the
elements into a new pattern. When this occurs the student has
insight. It is here that abstractions and generalizations come to
the fore. It is the analysis and insight that give meaning to arith-
metic, algebra and geometry. Lack of variety of previous experi-
ence, and over-preoccupation with fixation of specific habits, op-
erate to prevent insight.

4. After insight, the student practices the solution to smooth
and clarify the new learning (structure). The more sharpened and
systematized the knowledge is, the less chance is there for for-
getting. :

5. A whole (configuration) is always a part of a greater whole.
The relationships in one configuration (e.g. congruent triangles)
appear and are generalized in later configurations (e.g. similar tri-
angles). The relationship of relations is organized into a structure
of knowledge through analysis, synthesis, and deductive logic. A
system of knowledge must be built. We draw from the system
(and not from a multiplicity of isolated facts) for further learning.
Thus project learning and systematic courses are not contradic-
tory but of a different level of maturity in the learning process.

SOME EXAMPLES OF MATHEMATICS LEARNING

There are several methods of teaching the multiplication facts.
One common procedure is to present the facts, simpler facts first.
and drill on responses until they are automatic and correct. Thus
the learner is conditioned, or makes the connection-stimulus 6 X 9
—response 54. Then the pupil is taught how to apply this to solv-
ing problems. He goes from given specific facts to experience. An-
other procedure less common is to have pupils build their own
facts out of experience, and then organize them into related tables.
Which of these is the best learning procedure?

/
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Multiplication
0 1 25 3 4
tiol1je] 3|4

|
2'0:254?1'3
|

2

3 0 3 1 4

4 0 4 3 21

Consider the table shown of 5 numbers only, and call it a mul-
tiplication table. Make flash cards to show the items to be mas-
tered:eg.,2 X3 =1,3 X2 =1;4 X3 = 2,ete. Now drill. The
reader can assure himself that this table of multiplication facts
can be learned in five minutes. With appropriate drill of five min-
utes each day for a week it can be made fairly permanent. With
continued drill at spaced intervals over a year it can become as
permanent as “hickory, dickory, dock.” But what does it mean?
To most elementary-school teachers, and to many readers, the
answer is, **Nothing.” It is merely an association of meaningless
responses to given stimuli, which can be learned.

Now consider the dial and its control, as shown in the figure.
Iach time the button 1 is pressed the dial moves one space, clock-
wize, It is easy to see that 2 times 1 is 2, 3 times 1 is 3, and 4 times
1 is 4. If the button 2 is pressed, the dial moves through 2 spaces,
clockwise. Thus 2 X 1 = 2;two moves of 2 spaces is 4, and three
moves of 2 spaces places the dial at 1 and hence wesay 3 X 2 = 1.
Nimilarly, 4 X 2 = 3. If the button 3 is pressed 3 times, the dial
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makes 3 moves, each through 3 spaces and ends at the mark 4,
hence 3 X 3 is 4.

From this experience it is easy to build up the table and estab-
lish meaning for it. If we are to use the table of dial multiplica-
tion efficiently, we had better practice the table to make the re-
sults automatic. But we can interpret any result in the table
readily. The use of the dial to establish the table and then apply it
is the less common way of teaching the usual multiplication facts
in school, but it would appear to be a more satisfactory. need-ful-
filling method than specific conditioning.

Luchins performed an experiment in solving originals in plane
geometry. His subjects were high-school, tenth-grade students.
The students were drilled on proving lines and angles equal by
using corresponding parts of conzruent triangles. They developed

c

A B

a set or were conditioned so that equal angles evoked the response
parts of congruent triangles. This respo. e acted as a stimulus to
get sufficient parts of the triangle equal, to establish congruence—
then the final response, corresponding parts of congruent triangles
are equal. A series of originals on proving angles equal was given
to the class after the above learning. In the set, the following
original occurred: In isosceles triangle A BC, the bisectors of the
hase angles, 4D and BE, meet at F. Prove £ AFE = £ DFB. So
strong was the conditioning that all but one of the students proved
the triangles AFE and BFD were congruent in order to arrive at
the equality of the angles, whereas the solution shonld have been
apparent at once by the use of vertical angles. A mind-set proce-
dure (conditioning, transfer of identical elements) was a hindrance
to learning.

The following sequence of problems was presented to a large
group of teachers of mathematics, all with the same result.
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Area = 60

d 60

x

1. Represent tne altitude of a rectangle of area 60 as a function
of the base. The problem was a simple recall of an area pattern
. 60

and the answer given was h = -

2. In the same rectangle, represent the diagonal as a function
of the base. Continuing from problem 1, most students responded

by
d= g/ +80 o d= L VEFEw®

3. In the same rectangle, represent the diagonal as a function
of the perimeter. Continuing from problem 2, all students re-

sponded by placing p = 2z + 2(92) or x* — %E + 60 = 0. They

obtained 2 = p = Vp " 960 and attempted to substitute this

in the expression for d in problem 2 with various results from the
involved algebraic manipulation.

b 3

2

The students were then confronted with the rectangle, each part
labeled with a unique symbol, and asked to study the relationship
of the parts to the whole. They wrote 22 + y* = d* zy = 60,

(r+y) = 'f;)’ and it was only a very short period before the “‘ahs”

came forth as insight gave the pattern (x + y)? = 2* + 2xy + ¥*
2

or% = d* 4+ 120. A set belonging-sequence can help recall old

patterns but it can intecfere with the discovery of new patterns.




28 THE LEARNING OF MATHEMATICS

(o

A geometric original that has caused much trouble for high-
school teachers as well as their students is the following one.¢ In
the figure shown we start with right triangle RSC and bisect the
exterior angles at R and S. These bisectors meet at A. From 4
we draw perpendiculars to the sides RC and A D forming rectangle
ABCD. Is it a square?

To prove the figure a square we must prove two adjacent sides
equal. At once congruent right triangles is the response. An at-
tempt is made to get angles equal through the use of complemen-
tary angles and angle sums. This fails. Even the relationship that
z is not necessarily equal to y in this general configuration fails
to bring out the response, “‘try something else.” Despite the fail-
ure, the students continue to return to the unsuccessful path of
obtaining congruent triangles. They fail to use the relationship of
the given parts to the whole configuration. An approach that
studies the whole configuration says “What is the pattern of angle
bisectors?’’ This would suggest perpendiculars AB and AT for
bisector AR, and perpendiculars AT and AD for bisector A4S,
and immediately insight is obtained, AB = AD. It is only in
rejecting unsuccessful paths that trial and error can lead to a solu-
tion. It is in the relation of the whole configuration to its parts
that an insightful solution emerges.

When we see an immediate relation between a given condition
and a desired goal, that is, when the recall is forthcoming by
simple association because of the simplicity of the problem, con-
ditioning seems to be a good explanation for learning. When, how-
ever, the situation is complex, and we cannot see the path to the
solution, the use of seriated bonds, the study of chain responses
through a study of the parts of the situation seem to have much
less value than a field approach of studying the whole problem

I am indebted to Miss Barbara Betts of Boston for this example.
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and making an analysis of the relationship of the parts to the
whole, parts to parts, and whole to parts.

It is in the study of examples of learning and the various the-
oriex about learning that a teacher can gain a philosophy regarding
a psychology that will work for him in his classroom activity. In
the rest of this chapter we shall try to seek some common prin-
ciples of learning that are concrete and acceptable for classroom
management.

AREAS OF AGREEMENT

Most of us, with a little introspection (and perhaps some ration-
alization) can recall experiencing most of the elements in all these
psychologies of learning and the examples cited. In solving a geo-
metric original, how frequently we stabbed at one route, then
another, meeting block after block, coming back to the facts we
started with, stopping and resting, and then going on until sud-
denly the solution appeared. Was it trial and error, or progressive
clarification? Did we take separate steps in a sequential order or
did we analyze the relationships of the parts of the figure to the
whole configuration? Was there “insight” as the configuration be-
came clear? Did each step we took put us in a frame of reference
that made us take the next step? Perhaps all of these to some
extent.

If you offer a mechanical puazzle to a class of students and they
are not too homogeneous, you can observe a hierarchy of learning
situations. Some students will merely shake, pull, and shove the
puzzle by almost blind trial and error (no thinking) and by sheer
accid~nt they may solve the puzzle. Asked to try again they do
the same stunt for hours and do not solve it. Others will attempt
a deliberated trial and error procedure, remembering false leads
and avoiding them in subsequent trials. Eventually a series of
selected trials (belonging sequence) gives the solution, and then
repetition of the successful sequence insures permanency of the
solution. Still others will study the whole mechanism and the re-
lationship of the parts to each other and the whole puzzle before
any attempt at solution. They will try a certain movement, not
necessarily to reject this movement if it does not succeed in solving
the puzzle, but to see how it is related to other parts. After study,
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experience and trial with errors, the solution is obtained as an
organized pattern. There is little need to practice each operation,
but there is need to have the whole puzzle pattern clarified and
verified.

The classroom teacher is desirous of having at his command a
fundamental set of acceptable principles of learning upon which
to organize his teaching so that the best possible learning takes
place. At first glance the several interpretations of learning seem
so different and in some respects contradictory, that confusion
seems the outcome. But on further consideration, the teacher will
find certain elements in each of the theories that appear to be
important to him, and many other elements common to all the
theories. We can derive from all the psychologies a theory of learn-
ing that is effective for ourselves and modify it as we ourselves
learn more. The following elements may serve as a foundation of
an effective theory of learning.

1. There must be a goal on the part of the student to learn.
The learner must be aware of this goal. Thus a teacher must not
only know why a student should learn to solve a quadratic equa-
tion, but he must know how to transform this why into a recog-
nized goal on the student’s part. Motivation conditions the quality
of the learning. A pupil will stop counting and learn addition facts
when counting becomes inadequate for him and he desires a more
efficient method.

2. All cognitive learning involves association. The situation-
response may be simple or complex, it may be patterned, but it
is an important aspect of learning. When we see a® we expect the
response a‘a-a. Even a relationship of one element to another
is a form of association. The situation, similar triangles, is expected
to bring forth the response—proportional sides and equal angles.

3. We recognize trial and error or analysis in most learning.
If it is blind groping, then the learning situation is bad and the
learner is very immature. If the trial and error is deliberate, then
it can be better called approximation and correction, or analysis of
relations, which continues until insight occurs. The learner should
not be allowed to dounder. He should be guided in his experimen-
tation and activity toward the final goal.

4. Learning is complete to the extent to which the relation-
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ships and their implications have been understood. These rela-
tionships sometimes are learned on an initial trial, especially if at-
tended by an emotional response. More usually, practice is needed,
that is, more study of the situation. This may be accompanied in
some situations by studying the related set of responses, and in
others by analyzing the whole situation. The more simple the pat-
tern to be evolved, the less analysis is needed.

5. The learner must be in action, mentally and/or physically.
In conditioning, the learner learns what he is doing. In connec-
tionism, the learner must react correctly to a mathematical stim-
ulus. In field psychology the learner experiments and organizes &
pattern. It may or may not be a correct pattern of knowledge.
Unless the learner is active mentally and physically, and his ac-
tions lead to success, he is not learning.

6. Intrinsic reward of success and awareness of progress to-
ward a goal strengthens the learning and the motivation for fur-
ther learning. Punishment is a deterrent rather than an aid to
learning. Praise a successful response. Encourage students to make
a new and different response when their first response is incorrect.
With success, students raise their level of aspiration as well as
their ability to solve new situations.

7. Diserimination of attributes (abstraction) and generaliza-
" tion are essential to effective learning. Thus all learning situations
should be of the type where a relationship can be abstracted and
a process can be generalized. This is only possible if the situation
is meaningful.

8. New learning is in part a matter of transference of past
learning. The degree to which this takes place depends on the
degree of similarity of the new situation to the original learning
situation, the learner's ability to analyze relationships, and the
amount of varied experience in previous learning.

9. We learn facts and skills and we also learn how to learn.
Our learning situations might well be changed from “topics’’ such
as factoring, parallel lines, law of sines, and similar things, to prob-
lem situations involving the material to be learned.

10. We also learn feelings (attitudes). From unsuccessful experi-
ences we learn to dislike mathematics and to shun the subject. We
also learn to dislike teachers of subjects in which we have unfor-
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tunate experiences. We also learn to like mathematics from happy
experience with it. There are many concomitant learnings that
accompany the mathematics lesson that are outside the actual
subject matter.

INTROSPECTION AS A GUIDE TO LEARNING

The task of our secondary schools is to establish within the
minds of our students the fundamental bases for productive think-
ing. Unless we have left our students in a position where they can
solve new problems—where they can go on with their learning
independent of the teacher—we have accomplished but little in
our mathematics instruction. The work of the teacher is to develop
learning ability.

How we learn has been of interest to others besides psycholo-
gists. From the time of Plato, philosophers and educators have
attempted to explain how we think. They have attempted this
explanation through an intrcspection of how they themselves and
how otlers have come to know whatever they do know, and to
act however they behave. While this may appear to be an unscien-
tific approach;, yet the results of the thinking of these philosophers
have had wide .2fluence in establishing learning procedure.

Most famous of modern interpretations is John Dewey’s How
We Think (3) written in 1910. Dewey’s interpretation of a com-
plete act of thought (the solution of a problem) consists of five
major phases: problem-presenting situations, analysts, hypothests,
deduction, verification. Each of these areas can be related back to
some one or several of the psychological aspects of learning, and
to do this can aid us as teachers in establishing our credo of
learning.

A problem-presenting situation, or dissatisfaction, occurs when
an individual is in a situation in which he is confused, or in which
his previous knowledge does not give him satisfaction; he is not
adjusted: The individual's previous ways of acting in a situation
are inadequate. A student in setting up a problem obtains a yuad-
ratic equation which he does not know how to solve since his
previous experience has been only with linear equations. He does
not know what to do. He may experiment or flounder about, but
he is dissatisfied and unhappy. We recognize here the concept of
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felt need, and of goal-seeking behavior, since no past learning ex-
ists to give immediate satisfaction. We also recognize that learning
begins in a concrete problematic situation in which the answer is
desired by, but unknown t)», the individual.

A dissatisfaction causes the student to make a diagnosis of the
situation, but only if the motivation is strong enough. If by trial
and error, a student can find an acceptable answer to his quad-
ratic equation, the puzzlement may cease. but a further analysis
of the quadratic situation will not go on. New learnings are not
desired when old ones suffice. We must make the old way of acting
so inadequate that the motivation for new knowledge becomes
strong enough to send the student on. A quadratic equation with
no rational roots may do this.

The analysis is an examination, within the mind of the student,
of the situation in which there is dissatisfaction. He discovers why
he ix dissatisfied and clarifies the goal that would give satisfaction.
He recognizes or states his problem. The girl who, upon solving
tle quadratic y* — 3y + 4 = 0, obtained the answer 13(3 £ v/'=7)
was in a state of perplexity because of v/=7. “It just couldn’t
be,” 20 she said, *for the number under the radical sign should be
positive.'” But it wasn't positive, and it had to be accounted for.
Investigating past experiences in mathematies of creating negative
numbers and irrational numbers, which was an analysis or diag-
nosix of the situation, she finally stated the problem: “I shall have
to find an interpretation for /=7 to make it meaningful as an
answer.”

In some theories of learning little is said about the awareness
of the problem. Most theories assume the existence of a problem.
Thus Dewey has shown that analysis is used not only in the solu-
tion of the problem, but much earlier in the study of the difficulty,
in the clarification of the desired goal. Unless the learner can de-
tect his goal ax a verbalized or unverbalized expression, he will
Hounder in his learning of mathematics. Thus a student meeting
the quadratic equation for the first time should analyze his prob-
lem as “I must learn how to find the root of the equation when
an r*is in it."”

The third element of thinking (learning) is a search for hunches,
promising leads, tentative hypotheses. This is related directly to
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trial and error, making responses, or analyzing relations. Testing
a hypothesis is making a trial. Recalling the solution of linear
equations, a student may try putting z terms on one side of a
quadratic equation, and the constant on the other. If the equation
is 2! = 25, the hypothesis may prove fruitful, but if the equation
is #* + 2z = 25, the trial fails (the hypothesis is not sustained).
Then a new response is made. If the learner is active and purpose-
ful, he may go back and make a further diagnosis to differentiate
between the two types of quadratic equations. In forming hypoth-
eses, the learner may need the help of “cues’ to recall those past
patterns of learning that will help. It may be suggested that the
equation can be written in the form z* — 42z + 3 = 0 and the
student asked to focus attention, for the time being, on the left-
hand member (this is not to ignore the right-hand member). In
what situations has he seen such expressions before? This ..ay
recall the factoring of a trinomial into two linear factors. Here is
a recall of identical elements (learned patterns) and perhaps with
it the response z* — 4z + 3 = (z — 3)(x — 1). This pattern
suggests two linear equations. What is the relation in the whole
form (z — 3)(x — 1) = 0 between the left-hand member and
the right-hand member? Another hLypothesis (or trial) is, “Let
each factor be zero.” This hypothesis gives £ = 3or z = 1, and
either answer satisfies. The student has broken the block and
reached his goal. Note the importance of the recall of similar pat-
terns (association). In framing hypotheses, an important question
is, “What have I learned before that can be of help in solving this
new situation?” Students should be imbued with this question.
The whole process of framing and testing hypotheses until a
satisfactory route to the goal has been reached is the heart of the
learning process. It is the most difficult part, and if a student is
not successful after a few trials, he may deem the problem too
difficult to solve. Many of the readers can recall “giving up” in
their own learning, and allowing the problem to rest until more
elementary forms were mastered, or until a further diagnos's of
the problem could be made. A situation can be too difficult to be
mastered, or the student may be too immature (not ready) for
the task. It is impertant t~ note that the student must not be
told how to solve the equation. He must be guided to make his
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own analyses, his own hypotlieses, his own trials, and arrive at
his own final solution. The more he does this, the better learne:
he will become. We recognize in this much of the field psychology
point of view on learning.

The fourth element in Dewey’s analysis of learning is deduction.
By this is meant the organization of the solution of the problem
into a logical frame of reference. To Dewey, this was the most
important phase of the learning process, and most of his book,
How We Think (3), is concerned with logical organization. He says,
“Information . . .is not merely amassed and then left in a heap;
it is classified and sub-divided so as to be available as it is needed”’
(p. 41). And further, “Only deduction brings out and emphasizes
consecutive relationships, and only when relationships are held in
view does learning become more than a miscellaneous scrap-bag’’
(p. 97).

Once insight has occurred, and the goal has been reached, it is
seldom the case that the whole pattern is so clear and distinct that
it will be recalled when neaded in later learning. The organization
of the pattern into a logical construct. after insight has occurred,
can come about in several ways, (a) by going over and then gen-
eralizing the particular solution, (b) by taking many similar exam-
ples and abstracting the common elements of solution, (¢) by
making a logical chain of known theorems to the new result, and
(d) by a mixture of these methods. The essence is this—the learn-
ing of the situation is not completed with the initial obtaining of
a solution. The pattern of the solution must he organized.

The organization, according to conditioning, is organized through
drill of many like situations. Actions that lead to success and
satisfaction tend to recur. The more they recur the clearer the
whole action. As seen above, Dewey insists on a logical deduction.
Field psychology says that it is a meaningful analysis of the
relations that will give the desired organization. Most mathe-
maties teachers insist that all three procedures are necessary.

The student who obtained his solution to the quadratic equa-
tion would probably first verify his answers, then he would pro-
ceed to generalize his solution, then verify his generalization. His
first task is to make some organization such as: The quadratic
equation is related to the quadratic trinomial, equating the equa-
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tion to zero I factor the one member, the product of two factors
is zero only if at least one factor is zero, equating each factor in
turn to zero I have transformed the quadratic into two linear
equations, I know how to solve these, the two answers satisfy, a
quadratic equation has two roots. It is only through such thought-
ful organization that he can avoid such errors as equating each
factor of (zx — 2)(x — 3) = 6 to the number 6. This concept is
entirely outside of the logical organization obtained from the
original solution.

An organization sometimes reveals that the solution to the
problem was a fortunate accident, and not a general pattern for
solution. Suppose a student is confronted with a number of quad-
ratic equations of the form z? — a* = 0. He writes 2 = a* He
takes square roots of both sides being very careful to use both
positive and negative roots. Then he generalizes: Keep z* on one
side, get the other terms on the other side, take the square roots
of the latter side. This works until he is confronted with z* = 4z
+ 16. Then he is lost. The generalization did not really solve his
problem. This suggests that for the most part we set up our
learning situations to avoid particular solutions right from the
start. The problem should lead to a generalization that has the
greatest number of possible applications if it is to be of value in
new learnings.

The fifth step of reflective tninking is verification, precising,
and observation. If the learning has been accomplished, it is ready
to be used in new experiences. C. I. Lewis (10) expressed this
nicely when he said, “Knowing begins and ends in experience, but
it does not end in the experience in which it begins.” It is this
application of what we have learned to new experiences that leads
to creative learning. This is an important aim of mathematics
teaching, but an aspect of learning about which most psychologists
have little to offer. But if we have learned how to learn through
the steps one to four, it would appear that this fifth step is to a
large extent the reapplication of these four steps in a new problem
with special attention to the use of the material learned.

The person who has learned and organized the general solution
of a quadratic equation can now extend it in the new situation
z* -+ bx? + ¢ = 0, or more generally, £ + bx* + ¢ = 0. This is
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an entirely different type of experience from that in which the
original learning took place.

These five steps suggest a modification of the learning diagram
of Dashiell as shown below. The steps are illustrated by Roman
numerals. The diagram aids in seeing the relationship between the
psychological and philosophical explanations of learning. The
reader can refer this figure back to the preceding discussion.
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It is essential to note that the logical organization or structuring
of knowledge is the final step (never the first step) in developing
a basis for future learning. It is also necessary to note that the
steps in Dewey’s complete act of thought do not necessarily occur
in the order one, two, three and, four; nor are they necessarily
complete learning. Dewey’s explanation of thinking is a final struc-
tured explanation of what goes on in learning. A complete analysis
must not be made before the learner is aware of the problem.
Perhaps after he has an idea of his problem he finds further
diagnosis helps further to clarify the problem, and when hypothe-
ses fail, one after the other, he may return and reshape the prob-
lem. Further, the process of making a logical structure of the
solution may result n the discovery of new and more fruitful
hypotheses that give a better structure to the problem. There is a
weaving back and forth across the whole learning situation with
progressive clarification and elimination of unnecc-sary details
until we finally arrive at a mature, sufficiently well ordered solu-
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tion. Surely Dewey must have gone through some such procedure
in arriving at his final structure of the learning process.

Regardless of how problems of world affairs appeared years ago,
today to most people they seem more complex and more serious
than ever. There are at least two widely separated theories on how
we should behave. The one is to hold or to return to accepted and
proved behaviors those that have stood the test of time. In this
case our problem is not to unravel a new pattern of living, but to
resolve new conditions to old patterns. The other theory is that a
changing culture (new conditions) demands a new pattern of liv-
ing. We are now in one of the ever emerging stages of maladjust-
ment. We must therefore diagnose and clarify our problem, and
make hypotheses. We must experiment, generalize, and deduce
solutions; we must verify and “‘precise” our learning. We must be
inventive and creative, whether it be in matheratics, social
studies, government, physics, or art. \We must seek solutions and
take responsibility for whatever action our solutions initiate. This
is the scientific attitude. This is the way to new knowledge. The
key is learning how to learn.

Jacques Hadamard (3) in his Psychology of Invention in the
Mathematical Field attempted to analyze creative thinking. As he
saw it, it comprised four siages.

The first three steps of Dewey’s analysis may be taken as the
first or the preparation stage of creative thinking (step five). To
create we must first solve many problems within the field. We
must learn facts, skills, attitudes, habits, relationships, and be
thoroughly versed in the mathematics. Then a new and unsolved
problem may arise in the field. For example, a student may be
asked to create a method of drawing a graph of a quadratic func-
tion for complex values of the argument which make the function
real. It has never been solved so far as the learner is aware. He
brings to bear all the past learning and procedures of learning,
yet fruitful hypotheses are not forthcoming. To aid the student in
this is the function of our teaching.

It is then suggested that for the time being the problem be
allowed to rest from conscious attack. This can be looked upon as
the latter part of Dewey's step three, and is called the incubation
stage. Here the subconscious or unconscious, of which we know
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little, except that it plays an important part in our behavior and
probably operates in the inner part of the brain, takes over. Our
ideax thunches), our past knowledge, our concept of the problem,
our many unsuccessful hypotheses, and all our knowledge related
to the problem. are in, or have had an effect on, the brain and the
nervous svatem. What goes on we cannot explain except to say
there ix a reorganization, a restructuring of all these elements. The
uncertainty and vagueness of action in the unconscious may be
one reason why psychologists have, for the most part, omitted it
in their theories on learning. Yet certainly something goes on in
the unconscious. How do we know it?

By introspection, many, many ereator= in all fields of knowledge
agree that there comes a certain period, frequently unannounced,
mavbe ax we are relaxed before we go to sleep, or as we doze off
in a chair, or on the bns or subway, when apparently without
effort, inxight or emergence of the solution suddenly occurs. This
ix called the illumination stage, when there rises from the subcon-
scious to the conscious all the elements of the problem in an
ordered total configuration. It is the beginning of Dewey's step
four,

Having achieved insight, the discov :rer immediately precises
or sharpens hix solution. He develops it into a neatly organized,
logical, deduced pattern, placing it properly in the larger organi-
zation of mathematical knowledge. it is verified and tested as a
new learning, as a new contribution to knowledge. This is called
the rerification stage. It is analogous to Dewey's steps four and
five. Thus, preparation, incubation, itllumination, and rerification
as xtages in creative thinking have their counterpart in bhoth the
philosophic and psychological explanations of learning.

There is nothing new in this process of creative thinking that
does not occur in any problematic approach to learning. All such
learning is creative. There are successive and overlapping steps
which occur in all fields of human endeavor that are making new
contributions to knowledge. Insofar as learning how to learn, or
problem-solving procedures are general, we can make a contribu-
tion in the mathematical field by stressing procedures of learning
as much as we now stress the outcomes, without, however, detract-
ing from the securing of necessary skills and facts. Perhaps our




40 THE LEARNING OF MATHEMATICS

lack of creative learning may be traced to our lack of teaching so
as to have students learn by problem-solving.

THE ELEMENTS IN LEARNING-—SUMMARY

How we learn is described in part by physical processes, by
psychological aspects of behavior, and by philosephical considera-
tions. In all descriptions there are present the elements of malad-
justment, insecurity, dissatisfaction, motivation, drive, set, emo-
tional disturbance, diagnosis, problem realization, preparation,
recall, associations, trial and error (approximation and correction),
analysis, hypothesis formation, incubation, solution, insight, goal
attainment, illumination, structure formation, smoothing of goal
route, precising, deduction, logical organization, and verification.
This chapter shows in some manner how these terms are related
and what they indicate for classroom practice.

The questions raised by this discussion are numerous. How is
the organism motivated? How does it form its attitudes and
habits? How are the senses related to learning? What is a concept
and how are they formed? To what extent does language aid the
learning of mathematics? Is learning achieved at one trial, or is
practice a necessary requirement of learning? Does the procedure
of learning transfer to later learning and learning in other fields?
Just what is a problem, and how does the organism learn to solve
problems? Do learners differ in ability to achieve, and if so, how
do we provide for various rates of learning within a given class?
Must learning be planned or is it a hit or miss affair? If answers to
these questions are available, how can a teacher make sensible use
of them in his daily instruction?

The rest of this book seeks some answers to these questions.
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2. Motivation for Education in
Mathematics

Mavrice L. HARTUNG

WHAT impels a person to learn? What starts him into the learn-
ing process in a particular situation, and how is his learning
activity regulated? These and similar problems are commonly
suggested by the term “motivation.” They are among the central
problems in a theory of learning. To guide learning e‘iciently, the
teacher must have practical answers to such questions.

Psvchologists have had much to say about motivation. The
problem is a complex one, and psychological theory lacks clarity
and precision of the kind the mathematician likcs. Many of the
terms used, such as ‘“‘drive”’ and “‘set,”’ seem to be loosely defined.
Most teachers of mathematics find these discussions hard to under-
stand. Fortunately, in this chapter it will not be necessary to
consider in detail the origin of motives, the mechanism of motiva-
tion, or issues arising from different theories of learning. rdowever,
it will not be possible to avoid using some terms from those parts
of learning theory which deal with motivation. First, therefore,
attention will be focused on the meaning to be given a few key
words, including the terms “motive,” “goal,” and “incentive.”
Second, the nature of a few motives useful in teaching will be
very briefly indicated. The list includes purposes, interests, atti-
tudes, the need to maintain and build self-esteem, the need for
affiliation, and the need for approval. These motives will then be
discussed at greater length with special attention to their use ir
mathematical education. The role of meaning and understanding
in motivation will next be considered briefly, and the chapter will
conclude with a set of critcria for judging motivational methods
and devices.

The emphasis here will be upon a critical survey of general
types of methods and devices in relation to modern learning
theory. No attempt will be made to give detailed descriptions of
methods and devices which have been used for motivation. A very
extensive set of suggestions and references may be found in the
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Eighteenth Yearbook of the National Council (13), the pages of
the Mathematics Teacher, and other sources in the professional
literature of mathematical education (4).

THREE KEY TERMS

Motives. When a student learns, it is assumed that conditions or
states exist within him which initiate and regulate his activity.
These are called “motives.” Other words often used in connection
with motivating conditions are the following: drives, sets, wants,
needs, interests. For discussions of these terms and their special
connotations see 15:293ff; 14:16-17, 38-39. Among the different
motives commonly recognized are hunger, thirst, and sexual urges.
These are considered basic or primary motives. They are inborn,
universal, and connected with survival. Interests, attitudes, and
purposes are types of acquired or secondary motives. They are
learned and individualized. For example, the particular interests
which serve as motives for one person may not activate another
{15:297-98).

Students and teachers may both have motives of which they
are not conscious. Also, a person’s motives may conflict with one
another. His behavior ther tends to be determined by whatever
motive is dominant. Secondary motives through education may
become stronger, at least temporarily, than the basic motives.
Thus an individual may continue working on something which
interests him even when he is hungry and food is available. Teach-
ers are more concerned with the development and strengthening
of secondary motives than with primary motives. Also, teachers
must rely mainly upon secondary motives in guiding the learning
of students.

Goals. Most descriptions of the learning process make use of
the concept of goals. In this discussion, the term “goal” will be
taken as undefined. One can say that it refers to what the learner
is seeking or wants to attain, but this probably does not clarify
the notion for most people.

The responses of the learner in the learning situation are selec-
tive. This means that the student responds to some aspecis of the
situation but not to others. Some responses that are made are not
tried again, and other responses that are relevant to the learner’s
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goal are selected. It may be said that “the behavior is directed
toward the attainment of the goal.”” Thus the concept of a goal,
when related to motives, may be used to explain how motivated
behavior is given direction.

Incentives. Discussions of motivation sometimes use the term
“incentive.” This term refers to an object or condition which is
external to the learner, but whick will satisfy a motive which is
operating. When, for example, hunger is the motive, food may be
an incentive. If the need for recognition and approval is motivating
a student, a high examination score may in some cases be an
incentive. A high score would probably win approval from his
parents, teacher, and certain other students. However, at the same
time it may arouse jealousy or resentment, and thus set him apart
from a particular person or grcup whese approval he desperately
wants at the moment. The goal is recognition and approval, and
a high score may or may not satisfy the motive and be an incen-
tive. Teachers commonly use incentives in their efforts to contact
and make use of the motives of students. ‘Teachers hope that
incentives will help students move in the direction of their goals.

It should be noted that motives are often stated in terms of
goals or incentives. Suppose, for example, the goal is to possess
the approval of others. Then the motive may be stated as ‘“‘the
need for approval.” Again, a dictionary may say that hunger is
“the painful sensation or state of exhaustion caused by need of
food.” In this case the goal is release from painful sensation, which
is internal. The motive, of which hunger is really only a symptom,
is conveniently stated in terms of the incentive as “the need for
food.”

MOTIVES USEFUL IN TEACHING

A number of different motives have been mentioned above. Also,
attention was called to the fact that some motives are more
suitable than others for practical use in teaching. The most impor-
tant of the types of motives with which teachers are concerned
may now be discussed briefly.

Purposes. Purpose may be defined as the intention to seek a
relatively specific goal. For example, when a boy decides he is
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going to become a mechanic, a doctor, or a mathematician, he may
be said to have arrived at a well-defined purpose as to his career.
Thereafter, much of his behavior may be directed toward achiev-
ing his goal, and so his purpose acts as a motive.

Learning is often greatly influenced by the student’s awareness
of his need for what is to be learned, or of its potential usefulness
and value to him. One of the major responsibilities of the teacher
is to help stud. nts formulate well-defined goals, and to encourage
students to resolve to reach these goals—in short, to help them
adopt appropriate purposes.

Interests. The term “interest,” which occurs very frequently in
educational literature, is used in connection with behavior such
as the following: the person wants more of something—he seeks it
voluntarily and repeatedly, he stays with it for a period of time;
he expresses a preference for or states that he enjoys the activity,
and he may recommend it to others. This sort of behavior suggests
that a condition exists that satisfies the general definition of a
motive. At any rate, teachers are concerned with interests in
connection with the problem of motivation.

Interests are always directed toward something-—a student is
said to be interested in sports, in mathematics, in music, or in a
hobby like performing magic. Teachers are frequently advised to
investigate the irdividual interests of their students and to capi-
talize upon these interests in guiding instruction. Schools also
have the responsibility of developing new interests and deepening
old cnes.

Attitudes. The term *‘attitude’ is commonly used to refer to an
idea or set of ideas which have emotional content. Attitudes, like
interests, are always directed foward or centered about something.
Thus a person may have attitudes about war, or people of other
races, or a school subject like mathematics, or a particular teacher.
These ideas are not the same as cold facts about which he does
not care. Rather, they are beliefs about the object or subject, or
prejudices favorable or unfavorable to it, that really matter to him
personully.

Attitudes influence behavior and hence act as motives. They
are learned and, in turn, they often make new learning easier or
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- der to acquire. One of the chief obstacles to the effective
.earning of mathematics is the unfavorable attitude toward the
subject which has been acquired by many students.

Need to maintain or build self-esteem. Much of a person’s behavior
is guided by his feeling of personal worth. He tries to maintain
and build his self-respect, and he tends to avoid behavior which
lowers it. The things that contribute to self-respect difer greatly
from person to person. Behavior by a student which lowers the
teacher’s respect for him may actually contribute to or build up
his self-esteem (6:84). Thus a pupil who found long division con-
fusing and difficult decided never to work on another long division
example, and informed the teacher of his decision. This pupil
tried in this way to avoid a situation in which he was experiencing
repeated failure with accompanying loss of self-esteem. The use of
sarcasm and ridicule by teachers is frowned on by supervisors and
other euperts in methodology because, among other »~-<ons, it
tends to lower rather than build up students’ self-est ::..

Need for affiliation. Most people gain some satisfuction from
playing a constructive role in a functioning group. The sense of
belonging to a family, a gang or crowd of his peers, or to other
groups, is important to a person. The school provides a group or
groups in which the student is, physically, a member. If, however,
he is not really accepted as a person by other members of the
group, his need for affiliation may lead to behavior which inter-
feres with the learning task set by the teacher, and with the learn-
ing of other pupils. Often the attention-getting activity of students
i dexigned to gain status with the group. Hence even if teachers
o not exploit this motive constructively, they must deal with
the behavior which is associated with it (14:41).

Need for approval. People usually put value on receiving the
respect and approval of others. They want to be considered im-
portant—to be recognized. This need for approval is obviously
related to the need for self-respect and the need for affiliation. It
can become a very strong motive for learning, and it is widely
used by parents and teachers in promoting learning.

Interrelationships of these motives. The motives dizcussed above
are 1« to be ennsidered as <harply distinet or independent. Several
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of themy may be operative in the same individual at the sume time.
If so0. they iy tend to assist each other, or as noted earlier, they
may contlict. When, in guiding learning, confliets can be reduced
and several motives can be induced to operate together to produce
a desirable type of belavior, it ix clearly advantageous to do xo.
Discussions of teaching frequently stress the importance of mo-
tivating the student. Nome writers seem to believe that it is the
job of the teacher, or of the textbook, or ideally of hoth acting
jointly, to motivate the learner. The point of view implicit in
these statements is that motives are to be pul into the student
prior to or in the early phases of u learning experience. This view
i« not in accord with the definition of motives given above. Rather,
the definition suggests that the motives the student already has
are to be contacted, or perhaps aroused at the outset of a learning
experience. That is, the teacher utilizes existing motives in pro-
moting a particular learning experience. Most learning experiences,
however, involve multiple outcomes. Thus while ' * is learning
mathernatical facts and skills tne student is also  quiring atti-
tudes, interests, and purposes in relation to the subject. Later,
these may act as motives in relation to new learning experiences.
These motives may be either favorable or unfavorable to the
development of the behavior desired by the teacher.

PURPOSES AND GOALS

~lodern methods of teaching recognize the value of giving atten-
tion to the students” purposes. This involves the identification and
clarification of appropriate goals by both teacher and student.
Purposes growing out of the life goals of students, and particularly
those related to vocational and homemaking goals, are effective
with students in secondary schools and colleges. Goals of this sort
are remote and relatively ineffective with elementary school pu-
pils. Their goals tend to be of a sort more immediately attainable.
Teachers usually find that purposes growing out of the activities
of daily life are effective with these younger pupils. At all levels,
however, the extent to which the goals are realistic and the
possibility of successful achievement must be considered.

Contacting life goals. In mathematical education, methods and
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materials commonly used to connect learning experiences to pos
sible life goals of the students include those in the following list
derived from a survey of the literature (20:52).

1. Ascigning problems which are real to the students here and
now, such as handling the mathematical computations of the
school cafeteria (16), and studying their own social habits statis-
tically (3). This type of procedure was sometimes referred to as
functional teaching—teaching only those things of which the stu-
dents could make immediate use.

2. Pointing out that the methods of attacking problems in life
are much the same as the methods of attacking problems in
mathematics.

3. Showing how mathematics helps us to understand our en-
vironment,

4. Making practical applications of the mathematics being stud-
ied and by pointing out the extent of mathematical applications
in domestic and vocational life.

5. Having students conduct surveys of their own to determine
how much mathematics is used in daily life. For example, one
writer described how pupils conducted a survey of popular maga-
zines to determine the extent to which mathematics and mathe-
matical terms were used in them (22).

6. Emphasizing the importance of mathematical thought in
philosophy and as a factor in the evolution of civilization.

7. Using field trips for mathematical study of the environment.

8. Using visual aid.: (posters, photographs, slides, and other
materials) which bring out the importance of mathematics in
practical applications (10).

The major emphasis in this list is upon mathematics as it is
used by and has bearing upon the citizen in his ordinary life
activities. If the student accepts the idea that he needs to know
mathematics for successful living, he recognizes a goal and may
formulate a purpose—namely, to learn more mathematics. It will
not be sufficient, however, to give him a general discussion on his
need for mathematics—a sort of pep talk— at the beginning of the
year and occasionally thereafter. To be fully effectiv: in motiva-
tion, this general purpose must be related constantly to the specific
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topies or skills which form the content of the daily learning expe-
riences. Moreover, these topics and skills must be genuinely useful
to most citizens. It is rarely possible to maintain for any length of
time the illusion that a topic or skill is useful when it in fact is
likely to be of little or no use. Awareness of the usefulness of
mathematics in daily life is rarely effective in motivation unless
the material being studied is clearly relevant to this goal.

Mathematics is used extensively by many types of trained work-
ers and in numerous technical professions. This suggests a second
tvpe of emphasis useful in attempting to relate mathematics to the
goals of students. Information as to the kinds and amounts of
mathematical knowledge and skills actually needed can be made
readily accessible to them, and they can be encouraged to study
it. Under the guidance of a sympathetic teacher, such study may
help to clarify goals and purposes.

Both the above emphases have been extensively discussed in pro-
fessional books and magazines. They were also ably developed in
the Guidance Pamphlet in Mathematics for High School Students (9).
This document is particularly valuable for several reasons. In the
first place, it is addressed to the high-school student directly, and
it aims to assist him in thinking about his own purposes rather
than to state purposes which he is expected to accept uncritically.
In the second place, it avoids the common error of overstating the
case. Many teachers in their personal enthusiasm for mathematics
have ‘scared” students away from certain courses or types of
study by overstating the amount of mathe:natical training or
degree of skill demanded in a later course or a profession.

A relatively small but extremely important group of students
will ultimately become professional mathematicians. Motivation
is not an urgent problem with this group, but they also can profit
from guidance which enables them to learn of the ever-growing
scope of t.e opportunities in the field. Recently there has been a
rapid increase in guidance materials designed for use in colleges (18).

Much of the literature on the importance of mathematies in
college work and the professions is based on the opinion of those
already in the profession or of mathematicians. The value of such
views Is not questioned, but they may be less effective with high-
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school students than the views of their contemporaries would be.
An indication of what these views may be was obtained in 1943
by Crawford by means of a follow-up study of 424 high-school
graduates of 1942 (7:47). These students regarded English as the
most helpful of all subjects, with mathematics running a close
second Moreover; 43 per cent (including twice as many boys as
girls) indicated they would take more mathematizs if they could
replan their high-school programs in view of their present situa-
tions. Data like these from recent graduates are especially useful
in helping students clarify their ideas about the potential role of
mathematics in their own lives.

Realism in selecting yoals. When a goal or incentive has been
attained, and a motive or motives thereby satisfied, we commonly
say that the learning experience was successful. When a goal or
incentive has not %en attained, in spite of effort to ‘do so, we
consider the learning experience a failure, or at least a partial
failure. Now if a goal has been properly chosen, certainly what
both teacher and student want is success in achieving it. It is,
therefore, not necessary to espouse any particular psychological
theory as to the role of success in effecting learning in order to take
a position in favor of so arranging conditions that success is pos-
sible and probable.

The goals selected must be realistic in the sense that they are
at ainable. If the teacher attempts to set goals which the students
cannot attain, or if the students themselves are too optimistic in
choosing goals, excessive frustration and disillusionment usually
result. On the other hand, if the goals are too easily accessible,
-there is insufficient challenge and less than maximum achievement.
Under ideal conditions teacher and students working together
clarify the purposes of the learning experience on which they are
embarking, and they attempt to formulate a reasonable set of
goals for the class as a whole and for individuals. Moreover, as
work proceeds they re-examine the purposes and adjust them, if
necessary, as the situation unfolds. The learning situation thus
established is quite different from that in which the teacher makes
a fixed, predetermined assignment. When the student is given an
opportunity to participate with a group in formulating purposes,
a contribution may be made toward satisfying his need for affili-
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ation. In this way the general learning situation is improved. By
participating in the goal-setting process, the student is not only
more likely to be fully aware of what the goal is, but also more
ready to adopt it as his own, so that it can act as a purpose or
motive.

INTERESTS AND INTEREST-AROUSING DEVICES

Interests are motives that almost all teachers try to use to-
promote learning. The literature on mathematical education con-
tains numerous references to the importance of arousing the in-
terest of the students, and dozens of suggestions as to means of
doing so. Unfortunately, many of these suggestions seem to stem
from a relatively narrow conception of the nature of interest in
mathematics.

Genuine interest in mathematics probably depends basically
upon the problem-solving aspect of the subject. Problems, once
recognized or sensed, leave an individual in a state of perplexity,
uneasiness, or tension until they are solved. WWhen a solution has
been found, tension-reduction and satisfaction results. If mathe-
matics is properly taught, it presents the student with an abun-
dance of problems, and it also provides him with certain general
modes of thought and a supply of techniques which enable him to
attack these problems successfully. With each successful solution
he receives a dividend of satisfaction—he feels good when he gets
the answer. As a result, he seeks more experiences of the same
kind, and displays other desirable types of behavior which weve
described earlier in defining interest.

As the student grows in mathematical maturity, he obtains
satisfaction also from comtemplation of the power of his methods
and the sharpness and the beauty of his tools. The term ‘‘apprecia-
tion" ix often used in this connection. The behavior is relevant to
interest, however, because it leads the student to seek more expe-
riences with mathematics, to discuss it favorably with other people,
and to value it for what it does for him personally.

A good many of the devices recommended for arousing interest
seem to be based on the assumption that mathematics itself is
uninteresting and hence learning must be encouraged by extra-
.neous elements such as the mystery of a puzzle or the competition
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of a game. When, however, the subject preferences of children are
investigated by objective methods, mathematics is often found to
rank high in the list. In a recent study of the preferences of thou-
sands of fifth-grade children in New England, arithmetic was
ranked by the girls second and only slightly below reading (5).
The boys gave first place to arithmetic. When the rank order of
disliked subjects was examined, arithmetic was placed second and
only slightly under geography by the girls, and was ranked fourth
in disliked subjects by the boys. Arithme.ic ranked first as a
favorite subject of the 543 teachers of these fifth-grade children.
The children of a given teacher tended to follow her preference.
There is no evidence that these 543 teachers were using many
special devices to arouse interest in arithmetic. This tendency for
mathematics to be either very well-liked or heartily disliked has
been found in other investigations also.

In another similar investigation 2164 girls and boys in three
school systems—one urban, one rural, and one mountain—placed
arithmetic first among their preferences in (Grades IV through
VIII. In high school, however, mathematics was ranked third,
with English and Social Studies above it (12:34).

When some of the devices often recommended for use to create
interest are examined critically, their limitations for this purpose
become apparent. The use of material on the history of mathe-
matics, for example, is frequently suggested, and many textbooks
contain some materials of this kind. What kinds of behavior do
these materials elicit? First, the student reads some biographical
information about a famous mathematician, or some facts from
the history of a particular topic. This activity may or may not
give him any satisfaction or stimulate him to want to learn more
mathematics. Reading about mathematics or mathematicians ix
rarely a problem-solving type of activity, and thus lacks some of
the motivation of problem situations. Historical materials are
probably most effective with students who have already developed
considerable interest in mathematics, and they do very little for
those whose interest is meager or non-existent. It is true that
stories of some of the dramatic episodes in the history of mathe-
matics mav stimulate interest on the part of students for whom
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the subject has little appeal. They should certainly be used when-
ever possible. The difficulty is that they cannot be used often
enough to provide a cumulative effect and build a sustained in-
terest in mathematics itself.

Other devices commonly suggested include mathematical tricks,
games, puzzles, and other recreations. All of these have at least
a temporary appeal for many students. To secure a solution calls
for behavior which has some elements in common with problem-
solving in general —there is perplexity and challenge at the outset,
and satisfaction at the successful result. However, tricks generally
demand only the giving or following of a set of directions, and
puzzles are not usually solved by straight-forward methods. If
tricks and puzzles are overemphasized, the students are likely to
get a distorted idea of the nature of mathematics. They think that
mathematics consists largely of a bunch of tricks. Some teachers
have such faith in the motivating power of tricks and puzzles that
they use these terms in discussing e en the standard processes of
mathematical work. Thus they may refer to the reduction of
fractions, or the replacement of z* + 2zy + ¥* by (z + ¥)} as a
“trick.” The motivating power of such devices and the wisdom
of using them are hoth open to question.

If a theoretical explanation of a trick or puzzle is accessible to
the student, the discovery of it may of course become a genuine
problem. Investigating whether a trick which works for a particu-
lar set of numbears will work for others, or in general, may be much
more interesting than many practical problems. It is to be noted,
however, that in this case the interest is derived not from the
trick as a trick, but from the more general mathematical or prob-
lem-solving behavior that is evoked.

Most of the games used in mathematics courses are adaptations
of other non-mathematical games and are designed to practice
skills rather than provide problem-solving experience. Their effec-
tiveness in motivation depends upon factors such as the extent to
which plaving them with others satisfies the need for affiliation,
or winning the game satisfies the need for recognition. The mathe-
matical aspects are frequently a minor facet. Similarly, the writing
and staging of a mathematical play may stimulate a consideible
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amount of valuable learning activity, but the interest is often
centered more upon the dramatic activity with classmates than
it is upon mathematics.

In this connection a few comments on mathematics clubs may
be appropriate. Although club programs often rely heavily upon
recreational activities in mathematics, the danger that the mem-
bers will acquire a distorted idea of mathematics may be dis-
counted. This conclusion is based on the fact that membership in
the club is almost invariably voluntary. Only students who al-
ready have rather well-developed interests participate. These
students have had many successful and satisfying experiences in
regular mathematics classes. Their ideas about the nature of math-
ematics are, on the average, more rounded and mature than those
of their regular classmates. Club programs can further develop
the interest and understanding of these students by offering expe-
riences suited to their special talents. Motivation is not much of a
problem for the cluh sponsor, but it is of crucial concern in the
regular classroom. The teacher of mathematics may wish that all
students could be as well motivated as the club members are. At
tlie same time, the experienced teacher knows that materials ap-
propriate for a mathematics club may be ineffective in ordinary
classes.

Many teachers think of films, filmstrips, models, bulletin-board
~ displays of clippings, pictu.cs, posters, and the like, primarily as
motivating devices. These should, however, be regarded primarily
as learning aids, and their role is niore like that of the textbook.
That is, they serve to clarify concepts and processes, explain how
a principle works, or bring background situations and data from
the outside world into the classroom. Because they help students
get increased meaning and understanding, these learning aids tend
to increase interest and promote the development of favorable
attitudes. Moreover, they bring greater variety of experience into
the learning situation. Their concrete and visual characteristics
attract attention, and it must be remembered that attention pre-
cedes interest. Motivation is almost invariably improved when
they are used. If these materials were primarily designed for
motivation, a longer discussion of them would be appropriate here.
The greater importance of these materials as learning aids justifies
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the inclusion of a much more extended discussion of them in a
later chapter.

The teacher of mathematics who wants to help students acquire
a deeper interest in the subject may legitimately make use of all
of the devices mentioned above. Variety will be more effective than
the excessive use of one or a few devices. This is true not only
because the over-use of a single device of this kind dulls its appeal,
but also because some students who are not interested by one
device may be reached by another. In the last analysis, however,
the teacher must remember that these are, after all, only devices.
They are, in one sense, a diversion from thie main stream of mathe-
matical learning. The development of a deep and permanent in-
terest in the field is more likely to be fostered by regular and
successful experience in solving representative mathematical prob-
lems.

ATTITUDES AND SUCCESSFUL ACHIEVEMENT

All teachers are familiar with the fact that people usually have
a definite set of attitudes toward mathematics. These attitudes
may be quite favorable or strongly unfavorable, but they are rarely
neutral. Parents often say: “I am not surprised that my child
isn't doing well in mathematics. I had a terrible time with it
myself while I was in school. I never liked the subject.” Since
attitudes are often taken over from others, children are likely to
acquire the attitudes of their parents. They may also be influenced
by awareness of the attitudes of their schoolmates and teachers.

In a recent study by Dutton, written statements of attitudes
toward arithmetic were collected fror1211 prospective elementary-
school teachers (8). Only 26 per c:nt of the statements were
favorable to arithmetic, and 74 per cent were unfavorable. The
language used was expressive and emotional, revealing deep-seated
attitudes that had persisted from childhood. Prominent among
the causes given for the unfavorable attitudes were lack of under-
standing, failure to provide enough application to life and social
usage, poor teaching techniques, poor motivation, and feelings of
inferiority and insecurity. Some of the statements clearly revealed
that these students had been influenced by the attitudes of their
parents.
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Successful Experiences. Students often acquire attitudes as a
result of repeated experiences of a similar type. In particular, it is
well known that repeated successful experiences with mathematies
may lead to favorable attitudes, and similarly, repeated experience
which is unsuccessful and unsatisfying is likely to lead to the
development of an unfavorable attitude toward the subject. For
example, in a study of the attitudes of students in a commercial
arithmetic course, Billig found a definite positive relationship be-
tween attitudes, as expressed in written statements, and achieve-
ment (2).

The attitudes toward school, toward achievement, and toward
an education, of 200 children selected to represent certain achieve-
ment abil'ty patterns were studied by Kurtz and Swenson (11).
They found these attitudes to be more closely related to the
students’ achievement scores than to their ability (intelligence-
test) scores. The same study showed considerable agreement in
the attitudes of parents, teachers, and children.

Success in achieving purposes is generally preferred, by students
and teachers alike, over failure. Failure is seldom deliberately
selected as 4 goal by normal individuals, and fear of failure is
generally not regarded as a desirable type of motivation. Neverthe-
less failures, in one sense or another, do occur, and some attention
must he given to this problem. The argument is sometimes put
forward that failures in school are justified as preparation for
inevitable failures in life outside school—in other words, the stu-
dent must learn how to adjust to failure. It should be noted,
however, tnat life outside school gives ample experience in failure,
and that it is not necessary for the schools to provide additional
experiences. Moreover, in life outside school the individual has
some freedora of choice and action and can substitute another
and more attainable goal, while schools and teachers tend to force
children into repeated experiences of failure to reach the same
goal (14:52).

Successful experience helps the student maintain his integrity
and self-exteem, while repeated failure tends to tear him down.
Suecessful experience contributes to the building up of attitudes
favorable to the task, and of interests in it, while failure contrib-
utes to unfavorable attitudes toward the experience and inhibits
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the development of interest in it. Successful experiences win ap-
proval and recognition, while failures often call forth disapproval.
Hence if these varied types of motives are to assist purposes and
continue to operate in promoting learning, the experiences must
on the whole be successful.

Necwrity, order, and system. 1f achievement in mathematics is
reasonably successful, the student can develop certain feelings
of seeririty which tend to promote favorable attitudes (1). Children
can learn to check their own answers, so they feel confident the
resnlt is correct. Few if any other types of content have this
characteristic to the same extent as mathematics. It is important,
however, that the teacher help the studert to see the importance
of checking his work in terms of his own satisfaction. Far too often
he regards checking as useless drudgery, and such an opinion
may lead to an unfavorable attitude. For example, teachers some-
times require pupils to check multiplication examples by long
division, and conversely. The checking process then bec:mes la-
borious and loges some of its value in contributing to secu.ity. In
checking =uch examples most adults prefer to run the risk of
repeating an error by going over the work, but they nevertheless
satisfy themselves that it is correct. The possibilities mathematics
can provide for developing favorable attitudes toward correctness
and precision provide one of the strongest arguments for giving it
a prominent place in the curriculum. To encourage achievement of
this favorable result, teachers must provide the student with ap-
propriate methods of checking and the time to use them. Over-long
assignments, which drive the student to cover the material in a
hasty .or superficial manner, must be avoided. Speed must not be
sought at the expense of accuracy.

An unusually interesting study of the attitudes of young chil-
dren toward mathematics has heen reported by Plank (17). The
case study method was used with 20 children, some of whom were
retarded while others were accelerated in arithmetic. Of special
significance is the evidence of the relation of personality character-
istics, such as insecurity, anxiety, and rigidity, to performance in
arithmetic situations. Among the conclusions occurs the following:
““The insecure children show a definite discrepancy between their
scores in reasoning and computation in their achievement tests.
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They can neither stand the competitive atmosphere that goes
with computation nor the emphasis on speed while they are trying
to be accurate’’ (17:263).

« In many non-mathematical situations, the individual may es-
cape with a hasty or partial answer. Often a personalized type of
response is entirely satisfactory—for example, an opinion, a state-
ment of like or of dislike for a poem or a musical selection. The
student may also be encouraged to produce art products which
express his own personality. In mathematics such avenues of
adjustive behavior are greatly restricted. Tension-reduction and
satisfaction are not so easy to attain. Thus belief in the desirability
of precision and correctness must be slowly and carefully devel-
oped. If this is not done, premature demands for high precision
and correctness may lead to unfavorable attitudes toward mathe-
matics. :

The order and system of mathematics, when it is learned with
meaning and understanding, usually is a source of satisfactior. and
security to students. The manner in which a new topic fits into
and builds upon previous learning can be made evident. There is
increasing complexity of concepts and skills as one unit or course
builds upon another, but the number of really basic principles is
surprisingly small. At the same time, this characteristic may be a
source of extreme insecurity, sinte if one or more of the basic
concepts is not learned at the proper time, a very serious handicap
is imposed. In a less orderly and systematic subject, such an
omission is less likely to lead to learning difficulties and frustration
later. Thus the systematic nature of mathematics can influence
attitudes botl favorable and unfavorable to the subject.

An appropriate curriculum. The relation of successful experi-
ences to attitudes, and hence to motivation and learning, provides
one of the strongest arguments for curriculum reorganizations. It
suggests that content too difficult for a particular group of students
at a particular time should be relocated at a more favorable time,
or in some cases omitted entirely. It demands the use of methods
and materials which facilitate learning. It lies back of efforts to
care for individual differences by grouping pupils in various ways,
by offering two-track programs, by use of differentiated assign-
ments, and by other methods. There is a tendency for the curricu-
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lum to remain static while teachers frantically search for devices
to make it palatable. Although some of these motivating devices
may in appropriate circumstances increase the likelihood of suc-
cessful learning, they are probably far less effective, in the long
run. than efforts to adjust the content of the curriculum to the
learner s purposes, interests, and capacities. Most of the chapters
that follow are relevant to motivation insofar as they include
discussion of ways of accomplishing these ends.

SELF-ESTEEM, AFFILIATION, AND APPROYAL

The need to maintain and build self-esteem, the need for a
sense of belonging to a group, and the need for recognition or
approval, Lave all been discussed above in connection with other
motives. The teacher of mathematics may help or hinder the
student in his effort to meet these needs. In many cases in a learn-
ing situation the role of the mathematics will be less prominen!
than the role of the particular methods that the teacher employs
in handling students. In other words, it is probable that the edu-
cational philosophy of the teacher, an the influence of this phi-
losophy on student-teacher relations, is more influential than the
subject matter being studied.

Incentives. One method that many teachers rely on to promote
learning is the use of incentives. These incentives take many
particular forms, but rewards, punishments, and competition are
usually recognized as general types. The relationship of incentives
to such motives as the needs for self-esteem, affiliation, and ap-
proval has been extensively discussed, but the desirability of using
certain kinds of incentives in school still remains in the domain of
controversial issues.

Incentives are used by parents in the home and by workers with
vouth in the community. Parents reward their children for goed
hehavior, end punish them for bad behavior. Often the reward is
only a word like “Cood!” a smile, or a kiss; but sometimes it
takes a more tangible form such as candy, money, or a new piece
of clothing. Punishments are equally varied, but frequently in-
volve the withholding of anticipated rewards. By means of incen-
tives most parents regulate the behavior of their children not
only in the home, but to some extent elsewhere including the
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schoslroom. Similarly, organizations in the community, such as
the Boy Scouts and the local recreational association, offer incen-
tives to learning and achievement, usually in the form of badges
and prizes. The practice i more or less taken for granted.

In view of these circumstances, it is not surprising to find
teachers using incentives to promote learning in schools. The smile
of the teacher, praise for a job well done, a piece of work displayed
upon the bulletin board. a favorable report to the parents, the
publication of the student's name in the honor roll, may all on
oceasion serve as incentives. Students have learned outside school
to expect incentives of some kind to be in evidence.

However. in recent vears there has been a strong tendency
among educational leaders to challenge many of the common
practices of teachers in connection with rewards and punishments.
The following quotation from Hilgard and Rusgell (14) states some
of the questions which concern thoughtful educators.

That rewards influence learning is beyond doubt. The question be-
comes how they can be used appropriately. One of the problems which
exists for the teacher is that of the byproducts of reward, when reward
is viewed as purt of a total sovial situation. A teacher-planned reward
extrinsically related to the learning task is a kind of bribe and may lead
to the attitude, “What do I get out of this?’ That is, an activity is only
worth while for the remuneration it brings in praise, attention, or finan-
cial gain. Then there is the question of what happens to those who fail
to get the reward. If there is only one prize and 1any contestants, the
problems of the losers are to be faced along with those of the winners.
Perhaps the winner will be encouraged through the effectiveness of his
reward, but what of the others? Is the price in disappointment to them
worth what the gain was for the winner? Rewards are almost always
competitive: If everyone receives the same recognition or gets the same
mark, then the reward value goes out. Even in the stress on group
achievement, the group may be set in competition with another group,
in order to maintain the reward value of special status (p. 48).

Marks. Now it happens that the variety of types of incentives
admissible in schools is much less extensive than the set available
to parents. Candy is rarely considered an appropriate incentive in
schools. Money rewards are limited to scholarships and a few
prizes. Punishments are restricted as to type and severity. More-
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over. the mcentives available for use hy teachers of mathematies
are somewhat restricted in comparison th those of certain other
fields. Musical and dramatic ormanizations give publie perform-
ances, athletic teams play those of other schools, work in the shops
may produce useful objects, and the product of a sewing class
may be a new dress, On the other hand, mathematies as often
taught lends itself to frequent and precise testing. The correctness
of an oral or written answer to a mathematieal exercise ix usually
easy to check. Although test scores and school marks are not the
exclusive tools of mathematies teachers, marks have often been
one of the principal incentives relied upon in mathematies classes.

School marks, if properly determined, can be useful in u limited
way ax evaluative summaries. In practice, however, marks usually
become incentives also. High marks as incentives may satisfy the
need for recognition and approval. They help to build up self-
esteem and. if they are truly deserved, add to the student’s sense
of persoral worth. They are symbols of xuccess. Conversely, low
marks operate to reduce self-esteem and probably increase rather
than satisfv the need for recognition and approvul. An unfavorable
attitude toward the subject is a common result. Rince only a few
students of anyv group ordinarily receive the high marks, the total
effect on the group can be more unfavorable to future learning
than it is favorable. Moreover, emphasis upor marks as incentives
sometimes leads to undesirable forms of behavior such ax copying
homework and cheating on examinations.

Although many schools have abandoned school marks of the
traditional kind at the elementary level, the high schools and
colleges will dovbtless continue to uxe them in the years just
ahead. Teachers should therefore seek to turn them to maximum
advantage. They can, for example, emphasize the evaluative
rather than the incentive aspect. They can avoid putting too
mueh emphasis on high marks, as xuch, and be careful about how
they give public praise to the students who earn them. A written
note on the student’s paper, or a word of congratulation in a
private couference, will usually provide adequate recognition and
approval. Similarly, teachers can avoid publicizing low murks to
the class. In private conference with low-ranking students they
can at least try to refrain from using words that express disap-
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proval and lower the self-esteem of the student. They can direct
attention to positive axpects by focusing upon diagnosis of diffi-
culties and the determination of steps that can be taken to improve
the situation.

Compctition. The use of competition is rather commonly con-
sidered & means of motivation. However, as one writer states:
"Competition itself is not a motive. . .. Competition is itself moti-
vated—it ix a response made te certain motivating conditions and
exists because there are others who are similarly motivated"

21:618). For some people, competition may serve as a socially
approved form of aggression. Competition is possible because the
successful competitor usually receives some form of social recog-
nition or approval and a heightened sense of personal worth.

Although most authorities agree that competition often seems
to get results, evidence is accumulating that it also can have
harmful effects. It tends to produce excessive individualism. It
interferes with cooperative efforts-—working with and for the
group--and thus comes in conflict with one of the citizenship
objectives of the school.

It seems probable that most ol the undesirable aspects of com-
petition in schools may be side-steped if no pressure is put upon
the students as a group to enter into competition with one another.
If, for example, a superior student voluntarily enters a contest or
other form of competition, the situation is quite different from one
in which everyone in a group is put in a competitive type of situa-
tion. Moreover, it seems obvious that a contest between reaxon-
ably well-matched individuals may be so controlled by intelligent
management that the beneficial effect< are at least equal to any
possible harmful consequences.

It was mentioned earlier that the use of competition as a moti-
vating device is based on the assumption that the mathematics
itself is not interesting, and thus the student requires the extra-
neous type of motivation implicit in competition. In defending the
use of competition in schools, it is well to avoid analogies with
the business world where incentives in the form of financial profits
are quite acceptable.

In swmmary, inceniives in the form of marks or prizes, and
the types of competition which t:nd to be associated with them,
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are less favorably regarded today than they were formerly. This
is true because educators have become aware of the unfavorable
effects of these incentives upon many students. Although such
methods enhance the self-esteem and help to fill the need for
approval in a few students, they lower the self-esteem of many
others. Attention is shifting to a search for better ways of meeting
these needs.

One of the newer methods emphasizes the cooperative attack
upon quantitative problems by whole classes or through committee
work within classes. Thus, when a problem calls for the gathering
of data in the community, the library, or by correspondence with
people of other communities, opportunity is afforded for coopera-
tive group activity. Each member may assume responsibility for
a small but different portion of the work. The results may then
be pooled and interpreted as a whole. Such methods are designed
in part to contribute to the sense of belonging to a group. Recog-
nition and approval are in terms of the individual’s contribution
to the group.

The use of methods of this sort is relatively infrequent in mathe-
matics classes, but is growing rapidly in some other fie'ds. Group
dynamics is now one of the most active of research fields. These
studies have already made clear t'.at the ability of a group to
accomplish its purposes depends upon many subtle factors influ-
encing the relationship of the members to each other. In particular,
the individual’s concept of his role in the group is important.
This concept is influenced by his need to maintain his personal
integrity, his need for affiliation, and his need for approval. Teach-
ers of mathematics who wish to maximize achievement should
probably give at least as much attention to these motives as they
now do to the cultivation of the more obvious motives such as
interests.

UNDERSTANDING AND MOTIVATION

As time goes on, more and more teachers of mathematics recog-
nize the importance of making the subject meaningful to students,
and of helping them understand it. Unfortunately, teachers have
not alwavs agreed as what constitutes meaning and understanding,
vr on how these are developed in students. Mathematical educa-
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tion is now actively engaged in exploring methods of achieving
these objectives. Later chapters have much to say about it. Here
we shall discuss only the relation of meaning and understanding
to motivation.

Experimental investigations which have studied the develop-
ment of meanings and understandings often report that motivation
was easier or better in groups which were helped to acquire deeper
meaning and better understanding. It is easy to see why this
occurs. All too frequently students who want to understand their
mathematics have not been given adequate help and encourage-
ment. Failure to reach a satisfying level of understanding results
in lowered self-esteem. In contrast, successful efforts to help all
students gain meaning and understanding tend to maintain and
enhance individual and group self-esteem.

When students gain meaning and understanding as part of their
learning, there is a better chance that the elements of favorable
attitude: will be formed and new interests aroused. A recent study
undertook to develop an instrument for the objective measurement
of motivation in mathematics. Scores on this instrument were
correlated with a number of other measures including an intelli-
gence test score and scores on several well-known aptitude and
achievement tests in mathematics. Among these measures were
scores on a test of understandings in arithmetic. The correlation
coefficient obtained in this last case was much larger than the
others. When understanding occurs, better motivation tends to go
along with it (19). This in turn may affect later learning expe-
riences in ways which increase the level of achievement and also
result in total attitudinal and interest patterns of a desirable sort.

Most discussionz of the desirability of developing meaning and
understanding in connection with mathematical learning empha-
size the mathematical aspect. It must be remembered that the
meaning of an exp: rience includes more than the mathematical
concept or skill which is the supposed object of attention. The
purposes, attitudes, and other motives of the learner influence the
meaning of the experience for him. The mathematical meaning does
not change from person to person or from day to day. The total
meaning of a mathematical experience does change and is affected
markedly with the circumstances of a given situation. Much of
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the earlier discussion of this chapter has been related to meaning
in this larger sense of the term.

In recent vears many teachers have had opportunities at con-
ventions to see mathematical films and filmstrips, models, charts
and other learning aids exhibited. They have read articles about
such materials in professional magazines. In institutes, workshops,
and summer school classes, they have had experience in making a
few learning aids of their own. The result has been a great upsurge
of enthusiasm for these materials, and renewed energy for teach-
ing mathematics in general. In a word, the motives of these teach-
ers were aroused. They acquired new interests, new goals, new
incentives, and new purposes. One can hardly believe that this
all came about because these teachers saw, or made for themselves,
a few teaching aids. This phenomenon can be explained only by
recognizing that these teachers acquired new meanings and under-
standings from their experiences, or new insight into methods of
teaching. They also acquired renewed interest as a result of taking
a problem, such as the construction of a learning aid, and solving
it to their own satisfaction. Moreover, they found ways of satisfy-
ing their need for affiliation as they with other teachers worked in
groups. Their feeling of persongl worth was enhanced through
their participation in groups devoted to professional improvement
and satisfying social activity. Teaching as a whole had new mean-
ing for them, and it is almost certain that those who have had
such experiences are better teachers as a result.

CRITERIA FOR EVALUATING MOTIVATING PROCEDURES

The teacher in preplanning for the work of a class cannot ignore
the problems of motivation. Many possible procedures may come
to mind. Some of these will be rejected while others will be ac
cepted. at least tentatively, as suitable. Prior sections of this
chapter have indicated xome of the basic factors to be considere-l
in making ~uch decisions. It may be helpful, however, to list here
a set of questions that might be asked in this connection (20).

1. Is the proposed procedure likely to be effective?
a. Does it draw upon motives actually present in the learner?
b. Is it designed to utilize a combination of several motives in
the learner?
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c. Is it appropriate for the age level of the learner?

d. Is it based upon recognition of a goal by the learner, and
does the learner believe he can achieve the goal?

e. Does it motivate many students or just a few?

f How long is the motivation likely to persist?

. Is the motivation of a desirable type?

a. Does it lead the student to value the learning experience
itself rather than external rewards?

b. Will it widen and deepen the interests of the learner?

c. Does it tend to develop desirable attitudes toward the con-
tent or skill and toward the teacher?

d. Are the goals which are set actually attainable?

e. Does the motivation tend to strengthen attitudes necessary
for democratic citizenship?

f. Is the motivation consistent with the promotion of good
social relations between students?

3. Is the procedure practicable?

a. Is the required expenditure of time and money within the
means of the school?

b. How well can the procedure be controlled in practice?

¢. Does the teacher know how to administer the procedure?

In listing these criteria for judging motivational procedures,
there is no intention to suggest that the questions in the list are
to be formally answered in connection with every proposed moti-
vating activity. This is obviously impractical. Rather, the list is
to be viewed as suggesting the kinds of questions teachers should
have in mind as they think over possible procedures which occur
to them. These questions may also be useful in evaluating mo-
tivational procedures and devices described in the professional
literature or in professional meetings.

In con<lusion, we may reflect that the interests and attitudes
of most children when they enter school are favorable to learning
mathematics. Some of them learn to like it. Others learn to dislike
it. To change an unfavorable attitude once formed into a favorable
one is a difficult assignment. Efforts on the part of teachers to
arrange conditions so that unfavorable attitudes are not learned
will, in the long run, probably pay generous dividends.
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3. The Formation of Concepts

HENRY VAN ENGEN

INTRODUCTORY STATEMENT

Evex a superficial study of the development of concepts un-
covers the existence of a closely knit set of terms which are some-
how or other almost welded together. It is not possible to dip
into the field ever so lightly without encountering such terms as
“meaning.” “abstraction," “generalization,” “learning,” “under-
standing.” and “perception,” to mention only a few. There is of
course a good reason for this bhecause these terms refer to niental
constructs which in themselves are concepts, and these concepts
are essential for any intelligent discussion of the nature of con-
cepts or the formation of concepts.

In addition to being impressed by this ever recurring set of
words one ix conscious of a fuzzy use of words, at least in some
instances. If there is no fuzziness there ix no common agreement as
to the precize use of some of the key words. For example, Wood-
worth (33) =peaks of “induction or concept formation.” This use
of the word “induction’” mayv come as a surprise to mathematics
teachers. Smoke (42) speaks of “concept formation, generalization,
or concept learning.”” Other authors do not use the term “‘generali-
zation" in this way but =ubordinate it to the term ‘“concept” or
“eoncept formation.” Vinacke (48) in commenting on the fact
that concept formation. as vet, is poorly understood says, “Thus,
torms like ‘abstraction’ and ‘generalization’ are still utilized . . .
without sufficient analyxis of the behavioral and genetic processes
mvolved™ (p. 1),

The =tatus of the term “meaning” is of particular significance
at thisz time because of the emphasis it is receiving in discussions
in the tesching of mathematics. Currently it is popular to write
about meaning in arithmetic. Hence, many articles are appearing
in current magazines about teaching arithmetic, and mathematics
in general. meaningfully. Books on methods, and texthbooks, must
recognize this trend and discuss the topic at some length. The re-
sult is much confusion about “meaning” and some doubt as to

69
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whether everybody is talking about the same thing. This is espe-
cially true if one investigates the use of this term in those studies
which deal predominately with the development of arithmetical
concepts, although there are outstanding exceptions (See Werner,
52). Such terms as “‘meaning,” “relationships,” ““understanding”
are frequently used interchangeably as though they were Synony'-
mous. Hendrix (24) called attention to this problem in 7'he Mathe-
matics Teacher for November 1950, She pointed out that the terms
“meaning” and ‘“‘understanding” are not synonvins and, hence,
to use them interchangeably in the discussion of coneept develop-
ment only serves to block the communication processes. So, in
order to facilitate the communication of ideas it would seem best
to clarify first the use of the terms “meaning” and “understand-
ing™-—at least, to designate how these terms will be used in this
chapter of the yearbook.

THE MEANING OF ““MEANING” IN MATHEMATICS

A word or a symbol is not always used in the same way. A sym-
bol may have a meaning according to the way it is used in rela-
tion to other words, or according to how it is used in relation to
objects, or according to the purpose for which it is used. Accord-
ingly, it is customary to speak of the “dimensions of meaning."”
They are:

1. The Syntactic Dimension. Words and symbols have meaning
because of the way in which they are used in relation to the other
words in a sentence or formula. For example, “wind’’ means one
thing in the sentence, “Wind the clock,” and another thing in
the sentence, “The wind blew hard.” Similarly the symbol “2”
means one thing in the equation “z? + 5 = 6" and yet another
thing in the equation, “r, + 5 = 6.”

2. The Pragmatic Dimension. Words and symbols will vary in
meaning according to their purpose and consequences so far as
a particular individual or organization is concerned The words
“‘econoniic royalists,”” “‘capitalists,” and “socialists” as used in a
political speech are likely to be so used in order to arouse the emo-
tions of the listeners. Propaganda, both good and bad, is usually
filled with words which function in their “pragmatic dimension.”
While this particular use of words is of little interest to the mathe-
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matics teacher. as a mathematician, it should be of particular
interest to him a=x an educator. The elementary teacher who pun-
ishes her pupils by muking them work a certain number of arith-
metic problems per offense is setting the stage for the future
“pragmatic’’ use of the term “arithmetic.” In such instances the
term “arithmetic' is likely to become loaded with emotional
overtones which will effectively block learning. Experiences in
and out of the classroom take on meanings for the pupil, which
meanings become associated with symbols. These meanings may
be used later for a specific purpose by the child or adult. Wit-
ness the “big bad man,” “the dark room" and the ‘“ghost” as
used at times by unwise parents. Mathematics as mathematics
does not use words or symbols in the pragmatic sense but the
“fringe"" meanings of the symbol “mathematics” for the pupil is
of supreme interest to the teacher as an educator.

3. The Semantic Dimension. This is the third dimension of
meaning of primary importance to the teacher of mathematics,
whether an elementary teacher of mathematices, or a secondary
teacher of mathematics. Of course, when the child learns to com-
bine symbols to express ideas he is employing words in the syn-
tactical dimension. However, any senxible theory of instruction
would insist that the child first learn that the individual symbols
represent objects, other symbols, simple events, or mental con-
structs. These objects, or symbols, are called the referents of
the given word or given symbol. A father points to a chair and
makes the noise *chair.” The child then soon learns that the
object with four legs, a back and a flat surface, on which one sits,
is the referent for the noise “chair.” In this case the referent is a
concrete object. It could be a group of objects such as “a herd of
cows” or r r x x, the latter being a referent for the symbol ““4
'8

The referents may not be objects but may be “that which an
object ix doing.” In this case the referent may be an action of a
particular type. Thus, in the sentence, ‘“The bird flies,” the word
“flies™ refers to what the bird is doing- it refers to an action.
For children a whole class of words and phrases, such as, “joining,”’
“all together,” “ran to meet," ete., refer to the action of combining
two or more groups of objects which action is later symbolized
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by “+." Even symbols such as “+,” “~.” and “X,"” must have
referents in the initial stages of instruetion if arithmetic is to be
taught meaningfully.

But referents may be abstractions, such as the words which
represent colors, love, hate, or greed. Then again referents may
be mental constructs, such as “mathematical proof,” “variable,”

“function,” “V ~1,” and many others readily recalled by mathe-
matics teachers. The difference between these classes of referents
1s important to remember. In the one case the pupil derives the
meaning of the word fron: sensory experiences. He actually hears,
sees, smells, or feels the referent. In the other case the referent is
a mental construct which may have its origins in sensory experi-
ence but these origins are not specifically identifiable. The origins
of the sensory experiences which helped the pupil develop the

mental construct for *“V ~1" are those experiences which de-
veloped the concepts for such numbers as 2, 5, =6, together with
the concept of a mathematical system and a mathematical opera-
tion.

As has been stated previously, the teacher of mathematics is
especially interested in the syntactic and the semantic dimen-
sions of meaning. In the one case she is interested in teaching the
child by means of symbols which derive their meaning from the
wayv in which they are used in connection with other symbols.
For example, the symbol **="" as used in the equation 3 + 4 =
7. In the latter case, she is interested in making very clear to the
child the referent for a symbol. For example, in the number 23
the 2 represents two groups of 10 objects while the 3 represents
3 of the same kind of objects. The referent then becomes the 2
bundles of 10 items and the 3 single items. Or to take a more
abstract example, the algebra teacher interested in meanings is
always very sure that when using the formula, C = 3n (total
cost of n three-cent postage stamps), the pupil knows that the n
represents any positive integer and only a positive integer and that,
consequently, the C' represents only those positive integers divis-
ible by three. That is, the teacher is making sure that the pupil
knows the referent for the symbols used in the formula. Such a
teacher will never let the child draw, in this instance, the usual
straight-line graph for the formula ¢ = 3n.
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There can be little doubt that in general the teacher of arith.
metic and the teacher of mathematics spend a disproportionate
amount of time on the syntactic dimension of meaning to the
neglect of the semantic dimension. Mathematics is too often
taught by drill on the mechanical features of mathematics. This
places the emphasis on the syntactic dimension of meaning. Be-
fore the pupil is ready to use a symbol in connection with other
symbols the teacher must have established a referent for the sym-
hol in isolation. For example, in arithmetic, why drill on the
combinations (syntactic dimension) before making sure that the
child knows the meaning of such symbols as 4, 8, and 9 (semantic
dimension'. What are the effects on the child when he is drilled
on combinations (syntactic dimension) while the teacher totally
neglects to establish the referents for such symbols as + and —
(semantic dimension)?

Generally speaking, the teacher is confronted with the problem
of establishing the semantic dimension of meaning hefore estab-
lishing the syntactic dimension. In many cases however it is not
possible to cut up a teaching situation into three parts using the
three aspects of meaning as a “knife.”” Syntactic and semantic
dimensions can, and do, coalesce. However, the teacher of mathe-
matics must keep in mind constantly that words when used in
context do not have the same meaning as words when used in
isolation. Having established the meaning of a word when used
in isolation the teacher is still confronted with the problem of
establishing the various shades of meaning of that word when
used in context.

As an example of the shades of meaning which a symbol takes
on when used in connection with other symbols, consider the use
of the symbol z in the following situations: (a) 2z + 3, (b) 2z +
3=5.()1z, ( d)(x+2)?=22+4z + 4,and (e) (z + 2)* =
z? + 2z + 4. When considered from the point of view of the first
semester course in algebra in the high school the z in (a) desig-
nates any number selected from the class of real numbers. In (b)
the r represents any number selected from the class of numbers
which has only member, namely, 1. Other restrictions can be made
to fit examples (), (d). and (e). In fact, in all cases except (a)
and (d) the class of numbers from which numbers may be selected
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to he cubstituted for the variable x is a different class. Thus, the
meaning of the symbol x in these examples varies from example
to example because of the way it is used in connection with other
symbols.

While it is true that the mathematics teacher, as a mathe-
matics teacher, is not concerned with the pragmatic dimension of
meaning, as an educator she must be greatly concerned with this
dimension. Too many children, and adults, “freeze” when they
think, or hear, the word “arithmetic.” On the other hand, for
some pupils the word ‘“‘arithmetic’” or “algebra’” releases very
desirable emotional responses. These responses are the result of
experiences in the classroom, and the results of these experiences
must be kept in mind by all teachers of mathematics.

A CLARIFICATION OF THE ‘““MEANING’’ OF UNDERSTANDING

To discuss the “meaning’ of understanding by reviewing all
the various ways that the word ‘“understanding” can be used
would be of little value for the teacher of mathematics. The main
problem centers around how the word may be used by children
in the elementary- and secondary-schools. What are the method-
ological implications of remarks made by children and adoles-
cents, such as “I do not understand it,” “What do you mean?”
and “I know what you mean but I do not understand it.”’ These
questions, when used in a mathematics classroom, have special
significance. The pupil who asks, “What does this mean?” is
searching for something different from that which is wanted
when he says, “I do not understand it.” Of course, the pupil’s
difficulty may be a combination of both “meaning” and “‘under-
standing’ but for the sake of clarity it will be best to consider
these problems separately.

From the way these two words are used it is evident that they
can have different meanings. One speaks of “the meaning of a
symbol” and not “the understanding of a symbol.” Similarly,
one says “I understand your proposition” and not, “I mean
your proposition.” (“I mean your proposition” is a statement
designating a proposition which has been introduced into the
discussion. It merely points to a given proposition.)

Understanding refers to something that is in the possession of
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an individual. The individual who understands is aware of a satis-
fving feeling. a psyehological closure, which results from having
fitted everything in its proper place. Of course, this psychological
closure must be tested because a child may think he understands
when he does not understand. This problem may be considered
elsewhere, however.

The pupil who understands ix in possession of the cause and
effect relationships— the logical implications and the sequences of
thought that unite two or more statements by means of the bonds
of logic. The statement which is understood is seen to follow from
statements accepted previously by the pupil. From this point of
view it is xeen that understanding implies an “if-then” relation-
ship. The pupil who does not understand cannot explain how a
given “if”" implies a ~then.” The pupil who understands can ex-
plain the “then™ by means of an “if."" There are however, kinds
and degrees of understanding. In thix connection, see Hadamard
(11).

Consider the following example:

ot

~18

The pupil. or adult, is to he taught how to work this example by
the equal additions method. Whatever the words used to show
how to do this example the import of the words will be that “If
vou add 10 to the minuend and subtrahend then you can more
readily do the =ubtraction.” Now after the pupil has heen shown
that the 10 i added to the 6 in the minuend and the 1 (ten) in
the subtrahend he will know what the above statement (placed
in quotesr means but unless he knows the additional mathe-
matical prineiple that adding 10 to the minuend and subtrahend
does not change the answer «difierence) then he cannot under-
stand why this procedure obtains the right answer. In other
words he knows the menning of the statement, “You can sub-
tract if vou add 10 to the minuend and subtrahend.” but he does
not understand it. Obviously, a pupil may also be able to perform
this subtraction with great <kill but he may not have reached
that elosure which is so essential for understanding.

Meaning is that which is “read into™ o symbol by the pupil.
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The pupil realizes that the symbol is a substitute for an object.
It is a triadic relationship between a pupil, a symbol, and the
referent. Understanding is more nearly a process of integrating
conce; ts—placing them in a certain sequence according to a set
of criteria. Meaning, in its semantic sense, is a substitutinn proc-
ess. IL is a substitution of symbol for object, or symbol for sym-
bol or symbol for concept. Understanding is an organizational
process.

From these considerations it would seem that the phrase, *'I
know what you mean but I do not understand it is not a mere
play of word~. In a particular instance the pupil may know the
referent: he may know what to do but he may not know why it
should be done: he cannot inake the logical connection between
the “situational reed’ and the response.

The teacher of mathematices will teach for both understanding
and meaning. This is a trite statement, of covrse. But what does
a teacher do when she teaches for “understanding”? What does
she do when she teaches for “meaning™? An example may help
establish the essential difference in objectives in these two in-
stances.

Assvine the teacher is confronted with the t. 'k of teaching the
theorem in geometry relating to the measure ..t of an inscribed
angle. Now if she wishes to establizh the n. aring of the state.
ment. “An inseribed angle ix measured by half of its intercepted
are,” she would make sure that the pupil knows that if the arc
15 S0° then the angle ix 40°. or this purpose. visual aids of various
kinds are very important. The pupil quickly forms various in-
seribed angles on the visual aid and in each case finds that the
measure of the are ix twice the measure of the angle.

But at this point the pupil can still say. I know what vou
mean but I don't understand it. Why is it . 02" Now the teacher
i= ron‘ronted with the taxk of showing the pupil how this state-
ment follows as a vonsequence of having accepted (and under-
stood, let's assume) previous statements about central angles
and eirclex. In other words, to help the pupil understand the state-
ment, “An inscribed angle is measured by one-half of its inter-
cepted are,” the teacher helps the pupil to fit it into a conceptual
structure already in the pupil’s possession. If the pupil does not
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have this conceptual structure it is obviously impossible for him
t, know why it is possible to make this statement about inscribed
angles.

The teacher of mathematics should fully realize the difference
between these two approaches. She should realize that certain
methods are appropriate for the development of understanding
and still other metho. * may be appropriate for the development
of meanirg. She should realize that the same methods are not
necessarily appropriate for the development of both understand-
ing and meaning. The 'cacher who makes these distinctions and
adjusts her methods accordingly must of necessity be a better
teacher than t » one who blindly strives to “teach meaningfully.”

THE NATURE OF A CONCEPT

In spite of the fact that the educational world has long been
confronted with t .- problem of developing concepts, mathemat-
ical and otherwi~, there is much that is not fully understood
about the nature of a concept. This state of affairs is not due to
a lack of interest in the problem or to a failure of intensive inves-
tigation. The problem of how children and adults develop the
ability to form a concept is very complex. The problem is made
more difficult by the fact that the processes whereby concepts
are formed may not be the same for the child as it is for the
adult. There is reason to believe that the perception-abstraction-
generalization-response sequence, which seems to play such an
active part in the development of the child’s concepts, is not so
predominant in the development of the concepts of the adult.
On the other hand, one must not assume that because the problem
is not completely understood conceptual development has no
general features which are usually accepted by those who have
given the problem considerable thought.

In view of the present knowledge of the nature of a concept it
would probably not be wise to consider the pros and cons of the
various definitions that ean be found in the literature. Compare,
as examplex. Harriman (12), Smoke (41), Warren (49). Instead
it wonld seem wise to discuss the general features which are cov-
ered by the various definitions following which a summarizing
statement about the nature of concepts can be given. Such a pro-
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cedure should prove to be more useful to the teac.er of mathe-
matics in both the elementary and secondary schools than a con-
cise, formal defiition of a particular point - * ~iew regarding the
nature of a concept.

1. While it is true that concepts are not sensory data, yet they
are ‘‘that something” which results from numerous :ensory ex-
periences which are combined, generalized and carefully devel-
oped. The argument that this situation obtains can be supported
both by bringing logic to bear upon the situation and by citing
common classroom experiences.

The child, seemingly, is born with the innate ability to develop
concepts. Sensory experiences are essential to awaken this innate
ability so that conceptual development can begin. The child en-
tirely shut off from the world would not develop the concept of
“dog’ because the sensory experiences are lacking out of which
this concept must arise. If he cannot feel a dog, see a dog, and
hear a dog he does not have the fundamental units from which
to construct a concept of “dog.”

Experimentally, it is easy to demonstrate, as Vinacke (48: 3)
shows, that concepts are an elaboration of sensory data; however
citing classroom experiences rather than experimental results may
serve a better purpose Every thinking teacher has experienced
situations in which a child is blocked from responding because of
a lack of sensory experience—usually referred to under the broader
heading of experience. Of course, from an experimental stand-
point such situations are crude examples but they serve to make
the point. Children fail to distinguish betwcen colors, in part at
least, because they have not had sufficient experience, or an ex-
perience, with a particular color, or particular colors. In fact
(except for color blindness), for many children it would be im-
possible to pick out the color magenta for one of the following
reasons: (a) they have not experienced--have not seen --the color
magenta, (b) they may have experienced the color but have not
associated the word “magenta” with the sight experience, or (¢)
they have not made or consciously compared the color sensation
produced by a magenta color with other colors. In any case the
child is blocked from making correct responses (ignoring the
chance factor in this instance).
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Teachers of reading have long recognized the importance of a
wide backgronnd of experience because children cannot talk about
or read about concepts which they do not possess. This wide
background of experience is nothing more than a large collection
of sensory experiences which are in the possession of the child
and available for recall upon the receipt of the proper stimulus.
From this it follows immediately that the concepts possessed by
the child will depend upon the previous experiences of the child.
Furthermore, in *.ew of the fact that no two children have the
~ame experiences, in toto, it follows that the concept ‘‘dog”
possessed by individual A is not the same as the concept ‘‘dog”
possessed by individual B. As an example, consider two geometry
students, P and Q. Student P has drawn siniilar triangles and
noticed that any two pairs of lines in one triangle have the same
ratio as the corresponding pairs of lines in the other triangle.
Student Q has only noticed that the corresponding sides of similar
triangles have a constant ratio. Student P will have a different
and more complete concept of similar triangles than student Q.
Why? Because student P has had a different experience with
similar triangles than has student Q. Under formal teaching this
difference in experience may have been a difference in a “‘defini-
tional experience.” That is, similar triangles may have been de-
tined as being similar if, and only if, any two pairs of lines in one
triangle are proportional to the corresponding pairs of lines in
the otter triangle rather than the definitions found in the usual
geometry classroom. But regardless of the approach used the
stimulus of the spoken word *‘triangle’” will be associated with a
richer background of experience in one case than it will in the
more limited experiential situation; and hence, the concept of
“triangle” will differ in each case. _

2. Children and adults tend to integrate sense impressions and
respond to various stimuli in the same way. This feature of con-
cepts is readily illustrated by those individuals who will react to
the shouted word “mouse” in much the same way that they
react to the sight of a mouse. The geometry student reacts to the
<.a.x. comdition in the same way that Le reacts to the as.a. con-
dition in spite of the fact that the stimulus ix different. In this
ase the two stimuli have been thoroughly integrated so as to
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elicit the same response —*congruent.” In much the same way
the pupil integrates the sense impressions received by obrerving
variously shaped triangles with all the known (by him) properties
of a triangle and responds to them with the thought, “‘that's true
about all triangles."

3. The integration of sensory experiences, discussed above, is
accomplished through a symbolie process; at least it is svmbolic
in nature. In the case of the human organizm thix integration is
usually accomplished by means of words. Different words (sym-
bols) in many instances elicit the same response from the organ-
ism. Many simple instances of the integration of sensory experi-
ences to form a concept can readily be given. The word “car” ties
together the sensory experiences of the adults of today in many
ways. The pleasurable experience of the Sunday afternoon ride,
the experience of the near accident, or the injuries received in an
accident, are combined to form a total concept of ‘“‘car.” The
type of overt or emotional response released by the word ‘‘car”
will depend on the particular integrated set of experiences which
are svmbolized by the word “‘car"—in other words, the concept
of ““car.”

Mathematical instances of the symbolic integration of various
sensory experiences which are essential to the formation of a
concept can be readily given. The child in his early work in the
elementary school has many experiences with the actions asso-
ciated with taking 23 of some physical object such as a sheet of
paper. Later this -same symbol may bring forth a different re-
sponse—that of taking 25 of a number of objects. In this case the
symbol ties together different, but related, sensory experiences.

4. There can be no doubt that sensory experiences play an
important part in the development of the primitive concepts of
an organism. On the other hand, for certain very abstract con-
cepts the sensory experiences are so far removed, or sc intangible,
that the sensory origins of seme concepts are hard to locate. In
fact, from an introspective point of view there is reason to be-
lieve that the more advanced concepts of the human organism
do not depend on sensory experiences. Such concepts as ‘‘proof"’
in mathematics, or the concept of a mathematical system are at
least far removed from sensory experiences. The concept of “im-
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plication' as used in mathematics would seem to result * »m an
insight into how words are used rather than from sensory experi-
ences. Thix point of view is supported according to Woodworth
(53) and Munn (32) by what is known about the debatable sub-
ject of imageless thought.

5. When one considers what happens inside the organism which
might help characterize a concept there are two considerations
which seem important.

a. Concepts represent selective mechanisms—a “sieve’’ through
which external stimuli must pass in order to arouse symbolic re-
sponses in the pupil. Also the reverse situation may obtain, i.e.
the symbolic response arouses a perceptual response. Thus the
child may =ee the three-sided figure on the blackboard, thereby
arousing the response ‘“triangle,” a response which was selected
from the myriads of other responses that could have been given,
or he may hear the word triangle and look up to the board to see
a triangle.

. While experiments indicate this selective mechanism as a
characteristic of concepts it should not be inferred that a verbal,
or symbolic response is a necessary condition. Hendrix (25) very
ably makes this point and Smoke (43) obtained experimental
evidence which suggests that individuals may pussess a concept
and vet not be able to give evidence of the possession of this
concept by means of the usual lines of communication. Smoke’s
(. Jefinition of concept learning recognizes the existence of
non-symbolic responses. Hebb (14) says, “The implication of the
preceding paragraph is that a concept is not unitary. Its content
may vary from one time to another, except for a central core
whose activity may dominate in arousing the system as a whole.
To this concomitant core, in man, a verbal tag can be attached;
but the tag is not essential” (p. 133).

The existence of concepts on the subverbal level is a condition
that should be of utmost importance to the teacher of mathe-
matics. Children often give evidence of being in possession of
well-defined number concepts which enable them to solve nu-
merical situations, but being unable to tell how they solved the
problem. Upon being pressed for an explanation the child, at
times, rexcts by saying. “It’s just so,” or responds with the not
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too complimentary statement, if pressed too hard, “Ain’t he
dumb?” In teaching, Hendrix (25) points out, it is important
that this awareness of a genera'7ation be developed before it is
given a name. Many times teaching proceeds by naming a gen-
eralization and then giving instances for the purpose of making
the pupils aware of the generalization.

A summary statement about the nature of concepts is now in
order. For this purpose one can do no better than let Vinacke
(48) do the summarizing. However, it should be noticed that
Vinacke does not, seemingly, recognize the possession of a sub-
verbal concept by an organism in his summary.

They (concepts) must be regarded as selective mechanisms in the
mental organization of the individual, tying together sensory impressions,
thus aiding in the identification and classification of objects. But con-
cepts involve more than the integration of sense impressions, against
the background of which recognition oceurs, for they are linked with
symbolic responses which may be activated without the physical pres-
ence of external objeets. That is, coneepts can be given names -can he
detached from specific instances, by means of a word— and used to
manipulate experience over and beyond the more simple recognition
function. The symbolic response, however, stands for whatever it has
been linked within the previous experience of the organism and depends
upon how that past experience is organized (p. 5).

THE ATTAINMENT OF CONCEPTS

The development of concepts is basic to growth in learning
capacity. In general this growth in learning capacity is a growth
in conceptual development. For this reason it is important to make
a study of how cancepts are formed and to make an application
of this knowledge to the methods employed in the classroom.
Any such study must of necessity consider the activities of ab-
stracting and generalizing, since these activities are inevitably :
part of the total process of concept formation.

When a pupil observes common sensory or perceptual qualities
in a number of dificrent situations, or objects, he is abstracting
that quality from the total situation. The concept of *'green”
is acquired by seeing green in connection with many different
objects and colors und then focusing the attention on the one
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element in common—namely, green. Gireen then eventually is
thought of as a ‘“‘thing" in itself, something separate and apart
from everything else. The concept of a number may be acquired
in much the same way. The child may attach the number five,
for example. to a particular group such as the five fingers of the
hand. Later he observes that ‘“five’”’ applies to other groups of
object= as well. Eventually the child abstracts a “fiveness” which
is common to those groups which can be put into one-to-one cor-
respondence with the fingers of his hand. It is well known that
there are primitive tribes which have not made this abstraction.
They apply different number names to different groups equal in
number but differing in the kind of objects which make up the
group.

Abstraction plays an important role in the classification of
objects. A common property is fixed upon as the criterion for in-
cluding an object in a given group. Each item is then examined
to see if it <hould be included in the group. For example: If num-
bers are to be classified as prime or not prime each number is
examined to see if it is divisible by a number other than itself and
one. If it fails to pass this test it is classified as a prime number,
otherwise it is not a prime. Here a certain type of divisibility was
the abstraction which determined how each number was to be
classified.

(reneralization is another process used in conceptual learning.
Geeneralization signifies that the detail which has been abstracted
from a group of objects, or situations, is used to respond similarly
to a whole class of related objects or situations. Thus, a student
who understands the Pythagorean Theorem has abstracted a prop-
erty common to all xquares construected on the hypotenuse and
the legs of a right triangle. This property can be used, however,
to respond similarly to a whole class of other situations, If similar
polygo.s are constructed on the hypotenuse and the legs of a right
triangle the <ame abstraction can be applied to the polygons as
wax applied to the squares in the Pytt agorean Theorem. On the
other hand, this “Pythagorean pro} v can be generalized to
a much larger class of objects. Any figure, curvilinear or other-
wise, constructed cn the hypotenuse of a right triangle will have
itx area equal to the sum of the areax of the similar figures con-
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structed on the two legs of the triangle. Thus a pupil discovers
that an abstraction which he has learned by considering a rather
limited case (the squares) also covers innumerable other cases.

How are these two processes of generalization and abstraction
used in explaining the formations of concepts? Two theories are
commonly recognized. The one emphasizes the passive role of
the individual and abstraction, while the other emphasizes the
active role of the individual and generalization. The theory em-
phasizing the passive role of the individual and abstraction can
best be stated by quoting directly from Hull's (27) classical ex-
periment on concept formation.

A young child finds himself in a certain situation, reacts to it by
approach say, and hears it called “dog.” After an indeterminate inter-
vening period he finds himself in a somewhat different situation and
hears that called *‘dog.” Later he finds himself in a somewhat different
situation still, and hears that called “dog" also. Thus the process con-
tinues. The “dog” experiences appear at irregular intervals, The appear-
ances are thus unanticipated. They appear with no obvious label as to
their essential nature. This precipitates at each new appearance a more
or less acute problem as to the proper reaction. .. ; the intervals be-
tween the “dog” experiences are filled with all sorts of other absorbing
experiences which are contributing to the formation of other concepts,
At length the time arrives when the child has a “*meaning’ for the word
dog. Upon examination this *“meaning” is found to be actually a char-
acteristic more or less common to all dogs and not common to catx, dolls,
and teddy-bears. But to the child the process of arriving at this mean-
ing or concept has been largely unconsecious,...Such in brief is our
standard or normal-type of concept evolution (p. 5).

The active role of the individual and generalization ix empha-
xized in the theory of concept formation which stresses that the
conecept originates ax a hypothesis which is tested by applying it
to members. or suppoxed members, of a class of objects or situa-
tions.

While these two theories stress different features in the coneept
formation process, actually it seems better to unite the two to
form an eclectic theory of concept formation. Thix course ix indi-
cated because it . difficult to distinguish between generalization
and abstraction ii: the actual behavior of an individual. Hei-
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brede = (23) experiments have shown that in conceptual learning
both pru...ses operate at the adult level. However, there is rea-
son to believe that for the child the sequence of perception-ab-
straction-generalization is more nearly a true statement of affairs
than it is for the adult.

Heidbreder (13) in studying concept formation has achieved a
number of very significant results showing the order in which
adults attain certain tvpes of concepts. According to Heidbreder
those concepts were attained first in which the abstractions could
be made by reacting to drawings of pictured objects of things such
as trees, faces, and buildings. Next in difficulty she found that
abstractions could be made by reacting to drawings of forms—
“something less than a thing but not altogether un-thing-like.”
Such forms as cireles, squares and triangles were used in her
experiments in this instance. Most difficult of all the concepts
studied were those in which the abstractions had to be attained
by reacting to facts about collections of objects (numerical quan-
tities of). This latter type of response seems to be more remote
from the perception of concrete objects than is the response to
such things as visual forms and spatial forms.

What explanation does Heidbreder (23) give for this order of
things-form-number concept attainment? Using her own words,
“One answer immediately suggests itself: manipulability, rele-
vance to direct motor reaction” (p. 182). The concept “‘circle”
is attuined significantly later than the concept ‘“‘plate’ because a
cirele ix beyond the manipulability stage even though it is as per-
ceptible as the plate. The plate can be manipulated with the
hands. it can he felt, seen and weighed. The circle drawn on the
hoard cannot be manipulated. Its form can be traced in the air
but even this cannot offset the advantage of manipulability from
the standpoint of the attainment of the concept. The ease of at-
taining a concept seems to be more highly correlated with manipu-
lability than with perceptibility. In Heidbreder’'s own words:

Dominance in cognitive reactions seems to be correlated, not with
maximal openness to inspection, nor with maximal “‘givenness” in per-
ceptual experience, but with marimal relevance to action, specifically to
manipulation, that kind of motor reaction which human beings char-
acteristically employ (p. 182) [italics added).
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Reactions to the world of concrete objects are the foundation
stones from which the structure of abstract ideas arises. These
reactions are refined, reorganized and integrated so that they
becorne even more useful and even more powerful than the orig-
inai response. The part of the reorganization and the refinement
of responses in conceptual learning is nicely described t - McCon-
nell (31). Further consideration cannot be given to this problem
at this time.

This concept of the part that actions, or manipulations, play
in the development of concepts of the first order is of utmost
importance to the teacher. Children and adolescents use manipu-
latory experiences to develop primtive concepts, and those con-
cepts which are more nearly related to the action world of vhe
child are the ones that are more easily developed. From this it
would seem that any effort to improve the instruction in 11athe-
matics must take into consideration this rather commoniy ac-
cepted point of view regarding the attainment of concepts. The
weakness of mathematical instruction as commonly practiced in
our schools is more readily observable in respect to the lack of
adequate activities for conceptual developmert than in almost
any other respect. Books, paper, pencils, blackboerds, and the
drill exercises which usually accompany these instructional tcols,
are not sufficient except, possibly, for that relatively small per-
centage of pupils who are symbolically minded. Today’s school-
rooms are barren of those small inexpensive objects which
provide those opportunities for perceptual and manipulatory exper-
iences from which the average child can abstract and generalize
in order to take the first steps in formulating a concept. This
barrenness is further accentuated by the lack of pictures, movies
and filmstrips which can be used to picture the concept-forming
actions as a second stage in the learning of abstract symbolism.
This action-picture-symbol sequence in concept formation is fre-
quently ignored in its entirety and the symbol introduced imme-
diately. No other method can so thoroughly block conceptual
learuing, especially for the average and the slow-learning pupil.

The present day emphasis en multi-sensory aids has a secure
foundation in the poirt of view expressed by Heidbreder, Sinoke
and other psychologists of the operationalists’ school of thought.
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The manipulatory activities that result when blocks, buttons,
and models are widely used in instructional procedures provide
the essential elements from which concepts are more readily de-
veloped. However, this emphasis on multi-sensory aids does place
a responsibility on the teacher of mathematics which must be
given careful thought. Many of the manipulatory activities now
“going the rounds” in the world of mathematics instruction do
not include those manipulatory activities which develop the
concept, or concepts, for which they were developed. As text-
hooks, workbooks, and tests need careful evaluation, so also do
visual aids. As one example of a visual aid which does not aid the
child in developing the desired concept the following may be cited
as a horrible example.

Sometimes one finds that the first-graders are being taught
“what subtraction means” by the following picture device.

O00000-00=000

Now any teacher knows (and the child knows this even better
than che teacher, seemingly) that one cannot ac.ually perform the
operation pictured above. It is impossible to take two marbles
from five marbles as illustrated. Laying five marbles on the table
and giving two of them away will easily establish this fact. Now
the child also knows this because he has performed the feat of
giving two of his five marbles to Johnny many times. As a result
the “learning aid” illustrated above can only block the real
meaning of subtraction for the child in the first grade. It blocks
learning bHecause it does not picture the real life actions that
indicate to the child what the word ‘‘subtraction’ means.

NUMBER-CONCEPT FORMATION IN CHILDREN

Previous sections of this chapter have alreadv commented on
the fact that the difference between the processes whereby adults
form concepts and the processes whereby children form concepts
are likely to be one of degree rather than of kind. Therefore, the
action-manipulatory point of view set forth by Heidbreder as
quoted in the last section of this chapter are fully as appropriate
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for the processes of concept formation in the child as they are in
the adult. In fact, there is reason to believe that they are even
more characteristic of the child’s conceptual processes than they
are of the learning processes of the adult. It will be the purpose
of this section to support the point of view that actions and
manipulations are dominant in the formation of the child’s con-
cepts.

. There can be no doubt that too little thought has been given
to the part that actions play in the intellectual development of
the child. Attention has already been called by Van Engen (47)
to the role of actions in the intellectual development of the child
when this development is considered from a philosophic and se-
mantic point of view. However, the psychological foundations of
the “action basis” for learning must also be given serious consid-
eration. This is forcefully brought to mind by the phrase “hu-
man action system” which Gesell (10) used in his study of the
growth aspects of the mind. For Gesell, “action system’’ denotes
‘the total organism as a going concern, particularly its behavior
capacities, propensities, and patterns.”

To those teachers who have thought of learning in terms of
“specific habits’” “drill” and ‘“‘teaching by telling” it comes as
somewhat of a shock to learn that probably all mental life has at
its roots the actions or manipulations performed in a learning
situation. Gesell (10) makes this point as follows:

It is probable that all mental life has a motor basis and a motor origin.
The non-mystical mind must always lake hold. Even in the rarefied
realms of conceptual reasoning we speak of intellectual grasp and of
symbolic apprehension. Thinking might be defined as a comprehension
and manipulation of meanings. Accordingly, thought has its beginnings
in infency. We have already noted the germ of mathematics which lies
in the one-by-one behavior pattern of the year-old infant. Counting is
based on serial motor manipulations (p. 58).

The principle of action is tightly interwoven into Gesell's
description of the growth processes of the child (mental, physical
and emotional). For example, he says:

This principle [of motor priority] is so fundamental that virtually all
behavior ontugenetically has a motor origin and aspect. Vision, for ex-
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ample, has a motor as well a8 a sensory basis; likewise speech, mental
imagery, and conceptual thoughi. Even emotions trace to motor atti-
tudes and tensions (p. 65).

These quotations taken from the latest of Gesell's publications
furnish much food for thought for those interested in the con-
tributions of classroom experiences to the growth of mathematical
concepts. Lut before considering these implications in some de-
tail it will be profitable to consider the point of view of others
who have given this problem considerable thought.

The next source from which quotations will be taken is not
strictly a study on concept formation. It is rather a study on the
development of reasoning in the child; yet thinking is merely the
mental manipulation of symbols which represent concepts. The
close relationship existing between the mental manipulation of
symbols and the overt manipulation of objects is apparent upon
reading Piaget's (35) classical studies on reasoning and judg-
ment in the child in the light of the discussion found in the pre-
vious sections of this chapter. Although later studies have failed
to corroborate Piaget’s studies in all details, it is nevertheless a
pioneering effort which set the stage for many investigations and
can be relied on for its basic point of view.

Piaget emphasizes the close connection between manual oper-
ations, or actions, and the thought processes of the child. In fact
he holds that the child thinks by picturing, mentally, the manual
operations that took place in a given situation. Thus, Piaget
(35) says,

So that everything we have said in this work is to show that the
thought of the child is less conscious than ours has tpso facto led us to
the conclusion that childish thought is devoid of logical necessity and
genuine implication; it is nearer to action than ours, and consists simply of
mentally pictured manual operations, which, like the vagaries of move-
ment, follow each other without any necessary succession. This will ex-
plain later on why childist reasoning is neither deductive nor indue-
tive; it consists in mental experiments which are non-reversible, i.e.,
which are not entirely logical. ... (p. 145-146) [Italics added).

These movements and operations are a preparation for con-
scious reasoning in so far as they reproduce and prepare anew the
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mnuall operations of which thought is a continuation (p. 143) [Italics
added).

This is strong language; it has many important teaching im-
plications. Can it be supported? Werner (52) says,

The child's concepts always have a concrete content. Image and con-
cept are an indivisible unity. The cunceiving and the describing of a
thing are not distinctly separated activitics. As is true of primitive man,
the child's need of adjustment to adult language creates conceptual
forms which arise out of concrete perception, which are indeed both
perception and conception, which appear to be metaphors and yet
really are not. ... To conceive and define things in terms of concrete ac-
tivity is in complete accordance with the world-of-action character.
istic of the child (p. 271-72).

Here again one finds the action and the place of action in the
development of the concepts of the child. Are number concepts
developed this way? Consider the following quotations also taken
from Werner (52).

Frequently we find that abstract counting is supplanted by an optical,
or even motor configuration and ordering of groups among primitive
peoples and, indeed, among the naive of our own culture.

The formation of & ‘number system’ in its proper sense is bound up
with two developmental facta: First, with the increasing abatraction;
the number concept becomes more and more released from the concrete
configuration and the qualities of the objects. Second, with the develop-
ment of a scheme for the number order in particular (p. 294).

In view of the importance of the topic and in view of the im-
portance of the contribution to the field it may be well to quote
Heidbredor’s (17) findings and her interpretation of these findings
from a source not previously quoted.

Definitions referring to concepts of number were especially instruc-
tive. ...

There are thus indications that in attaining concepts of numbers,
some subjects reacted first chiefly to pictured objects, next chiefly to
spatial arrangements, and eventually chiefly to numerical quantities,
thus traversing in arriving at these, the last concepts attained, the entire
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course of events indicated by the experimental data considered as a
whole.

Taken together, the quantitative data and the detnitions are inter-
preted as indicating that in successive stages of an experiment, the
subject's reacticus were critically determined by succeasively less thing-
like aspects of the drawings as reaction determined by more thing-like
aspects proved inadequate (p. 137).

While Heidbreder's experiments dealt with the attainment of
number concepts in adults its significance for the development of
the child's concept of numbers cannot be overlooked. Th. re-
sponse to a spatial arrangement prior to the response to the
numericalness of a situation is particularly instructive. It would
seem to indicate that configurations play a fundamental vole in
the development of number concepts.

Judd (28) points out that

Number ideas are, in fact, more than images; they depend on the
presence of reactions. A child does not learn numhers by having them
inpressed on his organs of sense. There is no such thing as a number
sense. Number is acquired only when there is a positive reaction. One
must respond in a definite way to each item of experience which is to
be counted. The definite positive response which one makes to each
chject counted is reduced to an inner reaction in the course of educa-
t onal development, but it continues to be a reaction (p. 49).

From these quotations one can conclude that the perceptual,
manipulatory activities are of utmost importance in the develop-
ment of number concepts as well as concepts in general. On this
basis one can again conclude that in this respect instructional
practices in the elementary school are in general very weak.
The usual blackboard-chalk-paper-pencil methods for instructing
the child in arithmetic are entirely inadequate. Making marks
in a workbook is not a functional activity in the first stages of
concept development. Neither is continual drill on abstract com-
binations of symbols functional. These quotations show, clearly,
that the manipulation of objects is essential in the first stages of
number concept development---especially in children. Abstract
definitional approaches should be abandoned by the elementary
teacher and secondary teacher for an approach which emphasizes
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the organic awareness of a concept before it is characterised by a
definition or designated by a symbol.

The effect of this hypothesis pertaining to conceptual learning
is nicely brought out by present.day practices in teaching child-
ren to count. Too prevalent is the idea that the first stage in
counting is the memorization of a sequence of number names.
Nothing could be more erroneous. The part that “number con-
figurations” play in the development of the ability to count has
not been thoroughly investigated but there can be no doubt
that a configurational awareness of number should precede the
sheer memorization of number names.

IMPLICATIONS FOR THE TEACHING OF MATHEMATICS

What is known about concept formation and the implications
for mathematics teachers can probably be best, and most eco-
nomically, set forth in a few statements which, in part, summarize
whut has been discussed in earlier sections and, in part, a brief
statement of the results of experimental evidence not previously
discussed. When new results are included in the following state-
ments & reference to the bibliography will be given.

1. Mathematics teachers have not imade enough use of what
Heidbreder calls the “thing-like" aspects of conceptual learning.
The initial experiences with a new concept should conform to
the “world-of-action’ characteristic of the pupils conceptual learn-
ing processes. The ease with which concepts are acquired depends
to a great extent on the “relevance to direct motor reaction.”

2. There seems to be evidence that the more intelligent the
pupils, the more they are able to deal with language symbols,
and that they rely more and more on such symbols as the prob-
lems become complex (8). The fact is not surprising but it has
particular significance for the teacher of the slow learner. These
pupils are weak in the use of symbols and yet the instructional
tools placed in the hands of the pupil deal almost exclusively with
language symbols. Concrete-action learning equipment is needed
in any attempt to solve the problem of the slow learner. The
slow learner needs the manipulating experiences which develop
concepts. He also needs picture sequences to encourage him to
become independent of the concrete learning aids.
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3. Verbal instructions increase the variability of response (8).
Teachers should be conscious of the fuct that pupils interpret the
meaning of words in teyms of their own experiences and that these
experiences are not the same as those of the teacher. Henre, visual
aids will help to ‘‘unclog’’ communication lines, avoid misunder-
standing and decrease the variability of response.

4. “A combination of abstract presentation and concrete ex-
amples yields a distinctly greater functional efficiency than either
method alone” (27).

5. “During the evolution of concepts, mildly attracting atten-
tion to the common element ‘in situ’ considerably increases the
efficiency of the (learning) process' (27).

6. “A set to learn meanings as well as names yields a much
higher rate of learning and degree of retention than a set to
learn names only” (36).

7. Concepts logically learned are lecarned more quickly and
are remembered longer than are concepis illogically learned (36).
Commenting on this fact Stroud (45) says,

Material high in associative value is for that reason comparatively
easy to learn and for the same reason easily recalled, relearned or recog-
nized afterward. Logical material, material capable of meaningful or-
ganization or reduction to some kind of system, comes within the opera-
tions of transfer of training, operations that facilitate recall as well as
learning (p. 538).

8. A given situation will favor one concept over another and
the ease of attainment of the concept will depend on how readily
discernible the essential features of the concept are to percention
(48).

Teachers might well keep this generalization in mind in evalu-
ating the visual aids used in their classes. Too many visual aids
in use today do not highlight the essential features of the concept
they are supposed to teach. In many cavas the essential features
are too imbedded in the total situation. In still others it is merely
a visual aid, there is no relevance to the development of the
concept.

A simple example may make this clear. Teachers frequently
provide counting experiences in which the actions essential for
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establishing the cardinal concept of number are not readily ac-
cessible to perception. This inaccessibility to perception fre-
quently canses the pupil to confust the ordinal and cardinal con-
cept. If teachers ask the pupils to count xix children in a row the
predominant features in this situation are essentially ordinal not
cardinal, However; in counting six blocks which can be put into
familiar number configurations successively, each group is grasped
as the child says, “One, two, three, four, five, six.” All the actions
here present facilitate the development of the cardinal concept,
and the eye is aided in seeing the total group and not each sue-
cessive member of the group as en individual.

0. Negative instances are not necessary for tho development
of adequate concepts but may be included as checks (42).

In teaching the concept of adjacent angles in geometry the
teacher may include drawings of angles which have a common
side but not a common vertex. This is a negative instance inas-
much as it does not fit the definition of adjacent angles. However,
research has shown that the inclusion of negative instances does
not materially affect the development of the concept.

10. Conceptual development is a growth process. It takes time
to develop concepts. Hence the teacher should not expect the
pupil to develop a mature concept in a few days. Concepts are
developed by reviewing various instances in which they may
occur under varying conditions and with varied meanings, Fur-
thermore, concepts are not established readily by definitions un-
less the pupil is mathematically mature.

I1. There are such things as nonverbalizable generalizations.
Hendrix (25) and Smoke (43) have discussed the existence of
nonverbal generalizations. Hence the pupil who says, “I know
what it is but I cannot say it,” may be telling the truth, Xurther-
more developing the awareness of a generalization prior to ver-
balization facilitates learning.

12. The background of experience of the pupil is an important
factor in the development of concepts. This is amply illustrated
by the pupil who has done some art work ana knows the term
“perspective’” as it applies to representing three-dimensional ob-
jects on two-dimensional paper. This student when confronted
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with the term ‘‘perspective’’ as used in college geometry is often
confused. He is looking for the third dimension and there is no
third dimension.

The child who has had many and varied experience with money
encounters much less difficulty with the ‘‘arithinetic of money"
in the primary grades than the child whose experiences have been
limited. Similarly the child who has been given many varied ex-
periences with number ideas will have leas difficulty with the ab-
stractions presented at a later date.

From this point of view it would seem that it is the teacher's
duty to give the children many varied experiences with the con-
crete objects and the manipulations and actions which are essen-
tial to the development of concepts. Such activities are essential
to good instruction in mathematics.

13. Conceptual thinking is not necessarily harder than con-
crete thinking but it is easier to manipulate the concept of Sam
Jones than it is of Mr. A or of a. Murphy (33) makes this point
very nicely as follows:

The abstraction “man" or “Mr. A” is actually handled less efficiently
in logical relations than is Mr. Edward Jones or Mr. Harold Smith, The
results of experiments in reasoning.in which the same rational processes
must be carried through first with concrete and then with abstract mate-
rials show gross differences. Reasoning depends not on the formal ability
to take the necessary logical steps, since the connections required to
solve the task are the same in the two cases. But sometimes, in thinking
in terms of abstract things like z's and y’s, or Mr. A and Mr. B, one is
unable to control the concepts and handle them in pure form. One is
trying to do two things at once—concrete and abstract. In the concrete
tasks one manipulates spatial relations in pictorial or other form which
keeps them in the realm of immediate experience rather than abstrac-
tion (p. 391).

Algebra teachers should keep this in mind. The beginning al-
gebra student has learned to think in terms of individual numbers
such as 3.14, but he may have difficulty in thinking about an ab-
stract symbol which represents that number, such «s ». In par-
ticular, symbol z represents a class of numbers which may cause
considerable difficulty.
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4. Sensory Learning Applied to
Mathematics

HeENkY W. SYzR
SENSATION, ATTENTION AND PERCEPTION

I seems hardly necessary to justify the importance of sensory
learning—it is an essential part of all learniug. This is true if one
defines the ‘‘senses’ as any means by which the individual receives
stimuli from tl:e environment, and defines ‘learning” as any
adaptation to or acquirement of control over that environment
due to training :ather than maturation. Sensory learning is con-
cerned with the role which the receptors have in all types of
learning, and it is also concerned with any improvement in the
techniques of using the senses. These two meanings of ‘‘sensory
learning”’ appear in many books; we accept them both. Thus,
sensory learning is concerned with the physical aspects of the
environment and the physical aspects of the individual which
are important for learning.

Sensation is any experience which results from stimulation of
the senses; all sensations which are vivid and clear are said to be
those to which one is paying attention; and the totality of sen-
sations from a given situation, often from different senses, and
organizcd into a pattern, is a perception. On 'he basis of per-
ceptions, one abstracts and generalizes to forra concepts, carries
such concepts in the memory, combines concepts to form higher
types of abstractions, and juggles such concepts in mental trial-
and-error to form the rudiments of thinking. Put we are wander-
ing away from sencory learning merely to show thiat the senses
and their sensations are the basic data of all experience and
thought (32: 176-84).

There are eight senses which we shall distinguish: visual, au-
ditory, olfactory, gustatory, cutaneous, static, kinesthetic, and
organic (8: 111; 12: 87-95).

The receptor for visual sensations is the eye, and the stimulus
is some sort of radiant energy. With the eye we make discrim-
inations of color (hue, brightness, and saturation), distance, and
depth (3:57-101; 33: 78~105).

99
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The receptor for auditory sensations is the ear, and the stimu-
lus is & longitudinal vibration transmitted by the particles of the
air. With the ear we make discriminations of sound (pitch, loud-
ness, and complexity), distance, and direction (3: 102-39; 33: 106-
17).

The receptor for olfactory sensations is the nose, and the stim-
ulus is a solution of the substance smelled. With the nose we per-
ceive odors formed by combining the four elemental odors: fra-
grant, acid, burnt and caprylic (8: 96; 3: 146-53; 33: 117).

The receptor for gustatory sensations is the tongue, and the
stimulus is a solution of the substance tasted. With the tongue
we perceive tastes formed by combining the four elemental tastes:
sweet, sour, salty, and bitter (8: 100; 3: 140-46; 33: 122).

The receptor for cutaneous sensations is the skin, and the
stimuli are pressures, extreme temperatures, changes in tempera-
ture, and electrical and chemical stimuli. With the skin we make
discriminations of pressure, pain, cold and warmth (8: 96; 3: 154~
72; 33: 125-30, 133-34).

The receptors for static sensations are the semicircular canals
of the ear, and the stimulus is the motiun of the fluid therein,
With this mechanism we make discriminations of balance and
equilibrium (3: 176-84; 33: 137-40).

The receptors for kinesthetic sensations lie within the muscles,
tendons and joints of the body. With these nerve endings we make
discriminations of position and movement of the body (3: 173-
76; 33: 134-37),

The receptors for organic sensations lie within the abdominal
and thoracic regions of the body and the stimuli which affect
them are still not completely understood and analyzed because
the nerve endings are so buried in the depths of the body. They
lead to perception of such sensations as hunger, thirst, nausea,
vascular experiences, respiratory experiences, sexual sensations,
and the general “feeling tone” of the body (3: 172-73, 184-85;
33: 131-33).

Among sensations of any one type we can distinguish between
different sensations by the four characteristics of quality, inten-
sity, duration, ar . extension (32: 176-7R).

These sensations are the building blocks from which percep-
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tions, concepts, ideas, thoughts and learning are constructed.
They are the basis of all learning and find their greatest impor-
tance in the fact that any attempt to trace “meaning’’ back to
its origin, or any attempt to clarify “meaning" by explanatory
examples and applications eventually leads us to concrete objects
and experiences which have involved the senses. True, abstrac-
tions may have been built from other abstractions, but somewhere
back in the formulation of these ideas is a foundation in sensory
perceptions, and often we rush back to these perceptions when
the abstractions become vague and confusing.

The busy, buzzing world is presenting us with a flood of stimuli
constantly, and we are equipped to make selections from these
stimuli and attend only to those which we find interesting or
important. Thus some sensations are in the center of our atten-
tion and some are on the fringe. It is important to know the fuc-
tors which control and direct attention (8: 518).

These factors may be in the stimulus or they may be in the
observer (8: 523; 32: 182-84; 12: 87-120; 33: 67-70). Factors in
the stimulus which are important are those of quality, intensity,
duration, and extension - the same characteristics we nuica iorms-
erly. However, and probably more important, attenticn is more
apt to be caught and controlled by changes in these characteristies.
Thus certain colors create more attention than others, but any
change in color is apt to be compelling. Other changes or differ-
ences in proximity, or in contragt with the background material
are important. Changes in duration such ax sudden appearances
or disappearances of the stimulug, and especially motion of the
stimulus with respect to the buckground are attention-getting.
And naturally the extension or size of the stimulus is important—
the bigger, the more attention-getting.

The factors in the individual which control and direct atten-
tion are not xo easy to identify. For our purposes we will distin-
guish three: the novelty of the stimulus in terms of the experi-
ence of the individual, the present interests of the individual and
the organic state of the individual. Any stimulus which is very
familiar, any stimulus which differs from a present, compelling
interest. of the individual, or any stimulus which is presented
when the individual is ill will have less effect than otherwise,




102 THE LEARNING OF MATHEMATION

Now that we have discussed the kinds of stinmuli which can he
presented, und the factors which ussure that the stimuli will he
attended to, we should diseuss the factors which help to orgunize
these stimuli into perceptions. We should diseuss the pereeptions
of space, time, and movement whiclh are needed in learning.

Unfortunately for the scientific approach to education and to
psychology, it is impossible to predict the response and reaction
toa given set of stimuli. Iven in the same person the results may
differ at different times due to the internal conditions of that
individual, which serve to determine how the stimuli attended
to shall be organized into a perception (2: § 9. Wundt in ox.
perimenting with drawings made by children (36: 82) came to
the conclusion that perception deals only with the salient, mean-
ingful parts of the object being attended to. This sounds like a
truism until one interprots it to mean that stimuli of equal
strength need not be remembered or incorporated into n per-
ception to ‘e same de gree. These perceptions which belong or
fit into a pattern are those which are retained,

Certain factors determine whether perceptions are organized
into a pattern: (a) a constaney of form, color, or shape; (h)
figure-ground relationships; and (¢) the context in which the per-
ception is presented and the experience of the pereeiver (12: 123),

This whole subject of perception may have wnre importance
in the teaching of mathematics than in most subjcets beeause
there is less inherent meaning in a subject which must stress its
abstractness. For example: the perception of the number
164327463 as 16427463 or as 163427463 is not a trivial matter
which could be remedied after the stimulus is removed. On the
other hand, partial perceptions of words may be suflicient. Would
not any of the following be sufficient : “somthing.” “someting,”
“smething," “sometng,” “somethnig,” “soemthing,” or even
“smethng,” or “smthng?"

What are the chief types of patterns into which perceptions
are usually organized in the teaching of mathematies? Certainly
the most important are the bereeption of space, time and move-
ment. Space is most accurately perceived by the eve, time by the
ear, and movement by a combination of these two senses (32:
188).
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Visual <pace perception depends upon combinations of the
followirg cight factors: distinetness, shadow, position, relative
size, relative motion sensations of accommodation in the eve,
binocular differences in the eve, and sensations of convergence in
the eye (N: 65 .71 These are used to niike diseriminations of size,
proximity and direction,

Auditory space perception is used to make diseriminations of
direction and distance. ‘The former are based upon time differ-
ences to the two ears, intensity ditferences, and phase differences;
the latter ure baxed npon the intensity and the quality (or timbre)
of the sound (8: 91-02),

We are aware of the following types of patterns into which we
organize pereeptions of time: continuity, succession, length, and
rhythm 03: 246-60),

Perception of mwvement is dependent upon suctessive stimu-
lation of various nerve-endings in a receptor. However, this stim-
ulation may he enused by a moving object (such as a traveling
train moving in front of the eye) or by separate objects stimulat-
ing adjacent nerves and eausing apparent motion (such as in
motion pictures) (3: 260 -73).

We have now coneluded our survey of the psyehology of sen-
sory learning upon which we shall base our discussion of the
teaching of mathematies. We have diseussed the types of senses,
their receptors, and their stimuli; the factors which control and
direet attention; the factors which determine how sensations are
organized into perceptions; and to some extent the perception of
spuce. time and movement,

RELAVTIONSHIPS OF SENSORY LEARNING TO OTHER ASPECTS
OF LEARNING

Lest one think that senzory learning is the end and all of learn-
ing, or that the piling up of sensations in the braan (much as a
phonograph record or a photograph registers its stimuli) s the
purpose of improving sensory learning in human beings, it is
important to consider the connection between the fundamental
sensations and the higher processex of learning. We shall illustrate
by using the following higher types of learning: motivation, mem-
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orizing. the use of mental concepts, problem-solving, emotional
activities, and imagery.

Jotoation. Motivation is the condition of the individual which
points him toward the practice of a given task and which defines
the satisfactory completion of the task (3:312). The role of sensory
learning in motivation is to define the task in terms of the manipu-
lation of concrete objects which may be seen, heard, felt, smelled,
tasted, or perceived by some other sense. This is often necessary
in order to clarify the purposes of learning and thus lead to mo-
tivation. How can an individual point toward a goal if the goal
18 vague?

For example, if a pupil is asked to discover how many parts of
a triangle are needed to determine the triangle, and what com-
binations of sides and angles will do this, is it sensible to expect
him to want to do this if the phrase “determine the triangle’’ is
meaningless? Changing that phrase to “‘determine the size and
shape of the triangle’’ might make it clearer. However, for many
people the attempt to fit sticks together, to see how many essen-
tially different triangles can be made with three given sides, will
clarify the idea even more. A little experimentation in drawing
triangles with a side of 10 inches, an angle adjacent to that side
of 20 degrees, and a side opposite that angle of 6 inches might
help to clarify the question even more. By now the pupil may be
ready to solve the original problem under his own power because
he is motivated to do so. The motivation followed the clarifica-
tion of the problem and the clarification was the result of inter-
preting the original problem as a combination of visual, cutane-
ous, and kinesthetic sensations. Do the sticks fit together? Can a
ruler and protractor be manipulated to give one and only one
triangle fitting the conditions?

Naturally, the mental triangle, its properties and the conditions
which determine it are the important part of this learning, but
the physical manipulation made the problem real and thus made
the motivation possible. Often, for clarification, a problem will
be redefined in simpler terms which are less abstract, but are not
sensations to be experienced and manipulated.

Memorizing. We have more real evidence concerning memorizing
than we have concerning most types of learning (22: 58-66). By
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concentrating upon memorizing one can find correlations between
the mental phenomena of learning and the physical phenomena
observed in the receptors, nerve as system, and effectors. It begins
to look as though u phyxical explanation of learning is possible
in terms of conditioned reflexes, synapses and such physiological
coneepts. Indeed, such correlations are probably more valid the
more mechanical and simple the type of learning. Since memoriz-
ing is upt to be more mechanical and simple than higher types
of learning, we should be able to use the senses to a greater ad-
vantage in memorizing than in establisking such advanced types
as esthetic and moral learnings.

For exanple, the learning of addition facts is essentially the
memorizing of the results of combinations of objects which are
understood, abstracted, verbalized; and then memorized. If one
learns to count as the basis for other arithmetical learning then
the fact, “five plus three is eight” can be arrived at by inter-
preting five as . -//." and three as /,'/. Thus five plus three is
shown to be /.’ 7/ 7/ which then becomes //////// through
the meaning of plus. One then can count *‘one, two, three, four,
five, six, seven, eight” or, more probably, “five, six, seven, eight”
since the first group is known. The result is then recognized as
eight In order to detach this from the particular sticks, circles,
or marks made with a typewriter and generalize to the final
meaning of the “addition” fact, it is necessary to present the same
abstraction in many forms. Thus, pictures of chickens, apples,
chairs, pennies and groups of many other objects are presented to
the class so that no particular sensation will be attached to the
arithmetical abstraction. Because objects are moved around by
the pupils as they learn, we are also presenting groups of cutaneous
sensations and kinesthetic sensations as well as visual ones. Audi-
tory sens=ations could also he used, but groups of sounds or musical
notes are so ephemeral that they are not very suitable examples.

An older theory of learning would probably want to explain
the use of sensory learning in th:e memorizing of additicn facts
as follows: The facts are repeated to the children aloud many
times and thus the auditorv se sations strengthen the learning of
the facts: they are seen on the bla *kboard, charts, and textbook
many times and thus visual sensations strengthen the memoriz-
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ing; the children say the facts and write them many times and
thus more and more sensations, kinesthetic and organie, add to
the learning. The results of all this sensory learning ix & permanent
memorizing of the facts. This i definitely not the connection he-
tween sensory learning and memorizing which we are presenting
liere.

Use of Mental Coneepts. Sensory learning is necessary to the
understanding of concepts at two different levels: (a) when the
concept is being developed, and (b) whenever the coneept is being
applied.

Sensory learning in the development of concepts has been men-
tioned several times in this discussion already. Here it is again,
however: All concepts are abstractions from simpler concepts or
from perceptions experienced by the senses. Simpler concepts are
those which are nearer to the original sensations from which they
were all abstracted. Or, to build in the other direction, one begins
with individual scnsations which are organized into pereeptions
and abstracted to form concepts. By adding more sensations and
combining concepts we have a hierarchy of concepts which Zrows
further and further from the physical stimuli which are at the
base.

One example of concept building is the meaning of “five plus
three” previously discussed. Another, quite different, is the con-
cept of a derivative. This concept has fundamentally no more to
do with the tangent to a curve than “five plus three” has to do
with marks on a piece of paper. The marks are an example of the
concept; the tangent to a curve is a particular use of a deriyative.
Nevertheless, the derivative is uaually introduced by discussing
tangents to curves because it is more concrete. This ix the same
thing as saying that it is nearer to phyvsical stimuli. Which of the
following two statements is more apt to suggest visual and kin-
esthetic sensations? (a) The tangent to a curve is the limit of a
secant through the point of tangency and another point on the
curve as the =econd point approaches the first ax a limit, or (b)
the derivative of a function is the limit of the ratio of the incre-
ment in the value of the function (which corresponds to an incre-
ment in the independent variable) to the inerement in the inde-
pendent variable as the latter increment approaches zero. ls it
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any wonder that the first approach is used as an introduction?
The same reasoning is used in good teaching to introduce the
definite integral by means of area, the concept of mathematical
induction by talking about knocking over a row of dominos, the
concept of subtraction by the phrase “take away,” the concept
of percentage by the picture of a pan of fudge ten squares on a
side, the concept of a coordinate system by locating positions on
a map, and the concept of fractions by circles or pie plates cut
into sectors. All these show the use of sensory learning to build
congepts.

AR “application” of a concept which has been well understood
and established ix, by my definition, a step from that concept in
the direction of pereeptions. If it isx a simple concept, the applica-
tion may take us back to such perceptions in one step; if a more
complicated concept. merely in that general direction.

For example, the concept of measurement as the comparizon
of an unknown quantity with a standard called a unit may have
heen built by measuring desxks, blackboards, pieces of paper, chil-
dren’s heights and flower pots in the schoolroom. Then the class
could be axked how one could measure casily the distance from
the school to the firehouse down the street. Someone might come
up with the idea that the yardstick (their largest unit) could be
used to measure a piece of string (which was considerably longer
than the vardstick) and then the piece of string used to measure
the distance to the firechouse. The concept. had been understood,
and the application consisted of a deseription of the physical steps
that one would go through in creating a new, larger, and morc
convenient unit. Indeed, if you try this with a elass, you may well
find. as the writer did, that they put in many details of how to
hold the string. how to tally by marks on the blackboard the
number of yards found in it. and other deseriptions of the sensa-
tions which they expect to experience in applying the concept
of measurement to the fire house problem.

Problem-Solring. One use of sensory learning in problem-solving
ix the translation of a problem into some sensoryv analogue or
model. with manipulation of that model, cither physicaliv or
mentally to solve the problem. This process is similar to the
method of analytic geometry—a problem in geometry is trans-
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lated into algebra, the algebra is manipulated, and then the result
is translated back into geometry as the answer to the problem.
This is similar, but not the same. Algebra is more abstract than
geometry, farther from perceptions, so the method of analytic
geometry is actually the reverse of the method we are describing.
Analytic geometry is powerful, not because the algebra is easier
to visualize, but because it is more formal, and therefore its rules
of manipulation are more completely understood and more thor-
oughly organized.

An example of this important use of sensory learning is the
language of n-dimensional geometry. The interior of a sphere in
ten-dimensional space has nothing whatsoever to do with our
perceptions of the space in which we live. It is merely a mathe-
matical shorthand which appeals to our perception of three-dimen-
sional space, and, by analogy, gives a method of remembering a
certain algebraic inequality concerning ten variables. Sensory
learning is used to supply a framework for our thinking about
abstractions which have nothing to do with our senses at all.
Physicists use this method all the time in constructing models of
the atom. Another example is their insistence on a wave theory
of light or a corpuscular theory or some combination of these
theories which can have an interpretation in terms of our sensa-
tions. Recently, mathematical expressions have been said to hold
the only claim to “reality,” but the less esoteric of us still yearn
for the physical models as explanations.

Cole and Bruce have some quotations which are particularly
apt here (6:517-18):

The building of the model, the drawing of the diagram—either in
imagination or with physical materials—is a crucial step in the human
thought process. The architect thinks with his drawing board and
instruments, the machine builder with his model . ... Tt is this ability
to build a thought model which transforms the direct, bungling, blund-
ering behavior of the unthinking child into the thoughtful, planful,
reasoning behavior of the adult. ... What a thought model does, in
addition to giving us something to manipulate in our planning, is to
provide a host of suggestions of possible manipulations. . . Science is
--.a system of models, symbols, relationships; and, once we have



SENSORY LEARNING APPLIED TO MATHEMATICS 109

mastered its network of relationships, we turn to it quickly when we
are confronted with a problem.

A more elementary example from mathematics is shown in Fig-
ure 1 which gives a graphical method for deriving the formula

e ——ofe d e g —of dvje d > oo d-ofs- & |

Fig. 1.
for the nth term of an arithmetic series,

l=a+ (n - 1)d

and also for deriving the sum of the first n terms,

+ 1
S=n (a )
2
Another example is seen in Figure 2, which is based upon an
Indian method of proving that a* + b = c¢2 In both these ex-
amples the pictures are analogues of certain algebraic manipula-
tions, and make them easier to justify and to remember.

Thus ihe greatest contribution of sensory learning to problem-
solving is the construction of models which can be manipulated
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to produce sensations, actual or imaginary, to aid in finding solu-
tions to the problems.

Fig. 2.

Emotional Activities. Next, we should like to consider the con-
nections between sensory learning and emotional activities. We
shall consider the development of aesthetic appreciation and of
attitudes.

Aesthetic appreciation certainly calls first to mind the apprecia-
tion of paintings, sculpture, engravings, architecture, music, the
works of nature, good cooking, perfume and other sensations.
Even the elements of appreciation, the factors which are discussed
in order to reach a decision of aesthetic value, are reminiscent of
physical stimuli: balance, rhythm, emphasis, movement, unity,
and contrast. These terms are applied to nonrepresentative art
as well as representative. As soon as the objective is to represent
photographic fidelity in the graphic arts, imitation in music and
perfume, and the semblance of something which it is not in cook-
ing, then all the senses are called upon to make comparisons with
the object being represented. This shows that whether art is in-
tended to be lifelike or “pure” or whether it is judged by one
standard or the other, the judgments are always based upon
concepts which have their foundations in sensory learning.

The examples for aesthetic appreciation which can be drawn
from the teaching of mathematics are few; not because there is
no connection, but because little use of them is made in teaching.
The balance of geometric forms is a standard cliché in relating
mathematies to art. What teacher has explored the possiliility of
teaching rhythm and its appreciation in mathematics classes?
Certainly o consideration of various rhythms on the drums and
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the mathematical relationships between the duration of the sound
and the duration of the silence, the pattern of recurrence of these
sounds and silcnees and the recognition of waltz, rumba and
marching rhythms by the mathematical characteristics of their
graphical representations is an untried field. It is not destroying
the enjoyment of art to understand it. Analysis leads to
appreciation,

The second of our emotional activities to be considered, “de-
velopment of attitudes.” is taught to a large extent only indirectly
in mathematies. Mathematies, in common with all other subjects,
is responsible for the social, personal, moral, and religious atti-
tudes of students. Nince no course is entitled *“Attitudes,” nor
should it be, this phase of teaching is shared by all. It is a per-
fectly fair question whether we are carrying our share of teaching
these general attitudes. Sensory learning plays its part this wayv—
incorrect attitudes are often the results of incorrect understand-
ings which. in turn, are based upon incorrect sensory perceptions.
Attitudes ean be derived from experiences with mathematies, If
it is presented at too abstract a level it will rexult in frustration
and thus antagonism to mathematices, the authority of the school,
and possibly to people who can do mathematics well. Therefore,
in some eases, 4 more conerete approach could encourage correct
attitudes.

There are attitudes which are peculiar to mathematics and
which have a definite basis in sensory learning. The best example
to use here i= summed up by the word “‘numerology.” In its
strictest pseudo-scientifie sense this subject juggics numbers de-
rived from a person’s name, birthdate, the present date, his tele-
phone number and other sources and finally arrives at clear-cut
decixions concerning his vocation, marriage, financial investments
and anvthing else on his mind. We see here the groping of people
for a certainty ontside themselves in situations where there can
be no certainty, a place to transfer the blame for a decision..Do
we not have a responsibility to disassociate such duties from
mathematies? That subject has enough to do with its legitimate
tasks.

Superstitions uxing mathematics are common. Their interest
for us lies in the fact that many who believe them say they have
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reason for doing so. They have known of three deaths coming
together many times; when they carry fowrleaf elovers every-
thing turns out muneh better than when they donot: 13 is unlucky
hecause there were 13 at the Last Supper; 13 is unlucky hecause
there ave 13 steps to a gallows and 13 ridges on a hangman's knot .
Here is a definite appeal to sensory perceptions to justify the
superstitious attitudes. The teacher's task is to turn this same
trust in sensorv learning into a scientifie experiment to test some
superstitions. Not anly would faith in irrational mathematies he
attacked, but an illustration of the scientifie method would he
displayed.

Imagery. Our final connection between sensory learning and
higher processes in learning will soncern imagery. We can classify
images into six types: after-images, eidetic images, memory
images, imagination images, dreams, and hypnagogic images.
Thus imagination will fall into place at just one of the types of
image (3: 360-6R). Imagery is usually discussed in terms of visual
imagery, but it can result from any type of senxation.

In general, an image is the reproduction of a past perception,
in whole or.in part, in the absence of the original stimulus. The
lingering of the perception for a few seconds or minutes after the
stimuius is removed is ealled an after-image. Eidetic images are
remarkably clear images which persist after the stimulus ix re-
moved which earry details apparently not originally attended to,
and are sometimes under the control of the individual. Memory
images are the most familiar tvpe and are less clear than after-
images or eidetic images but can be recalled after longer periods
of time. Imagination images combine parts of memory images to
create images which never were experienced in that form as the
result of an external stimulus, Dreams are images experienced
while we are asleep, and their origin in past perceptions ix vague
and not fully understood. Hypnagogic images are similar to imagi-
nation images but occur in that half-and-half state between wak-
ing and sleeping. For the teaching of mathematics the most im-
portant types of image are the memory image and the imagination
image.

Menory images are economy measures. It is certainly more
efficient to be able to call up the perception caused by some past
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stimuli. Without this ability there would be no thinking or leurn-
ing. only experiencing. The ability to control memory images
varies with many factors both within and without the individual.
We cannot amplify this subject of memory without losing the
thread of our present discussion.

Nince learning is concerned with the retaining of correct memory
images (among other things) and thinking is concerned with the
manipulation of mental images (among which are memory images
based upon sensory perception), it is easy to see the importance of
sensory learning for memory images. The success of learning and
thinking depends in part upon the ease of recalling such images
and the clarity of such images when they are recalled. This ease
and clarity will depend upon the conditions under which the
original perception took place. If the perception has been well
organized, both within itself and also into the experience of the
individual, the memory image will be easy to recall and clear.

Let us apply this to the memory of the rule for adding signed
numbers in beginning algebra. In order to organize the perception
well within itself we need to show many examples, using both
<mall numbers and large; with both numbers plus, both minus;
with the one of larger absolute value plus, the one of larger abso-
lute value minus; with the plus number above the minus one, the
plus one below, the plus one to the right, the plus one to the left;
with possibly fractional and decimal forms; and finally with signed
algebraic expressions. Irom all of these the rule we wish remem-
bered will emerge in a memory image that should be strong and
clear. In order to organize the perception into the experience of
the individual we built the concept from concepts already known
and apply it to other concepts already known. In the exainple of
the signed numbers we use such ideas as thermometers, assets and
liabilities, above and below sea level, or any other concepts al-
readyv a part of the pupil’s experience. Thus, a well-organized
perception leads to a well-established memory image.

The other tvpe of image, the imagination image, useful in
learning and thinking, may be even more important. In order to
arrive at new conclusions, not identical with perceptions pre-
viously experienced, a pupil must have the ability to break looxe
parts of memory images and combine them into new, imagination
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images. This type of activity is a necessary prerequisite to all
physical creative activity whether it be practical, such as the
design of a new type of aircraft, or artistic, such as some new, non-
objective painting. The concept must appear in an imagination
image before it can appear as fusilage or oil paint. If practical and
artistic progress is made by those with active imaginations, what
can mathematics do to encourage such imagination?

Imagination is needed in mathematics to suggest possibilities
for proofs of originals in geometry; to suggest combinations for
factoring a quadratic polynomial; to suggest that variable which
should be “2 in a word problem; to suggest things to buy from
the playstore in arithmetic; to suggest the best way to place the
co-ordinate axes at the beginning of a problem in analytic geom-
etry. What role does sensory learning have in each of these situa-
tions? In solving geometric originals it is useful to have some
flexible devices to illustrate possible arrangements of geometric
parts in the figure. Such devices made of cardboard, wooden
strips, and elastic, as the Burns Boards (23: 379-95) give sensations
whizh can be changed at a speed nearer that with which the mind
changes from one image to another than do less flexible methods
of illustration. Of course, this is a crutch to the imagination, but
such crutches should be used until the imagination is strong
enough to walk without them. It is up to the teacher to withdraw
the use of the crutch as fast as the pupil’s abilities allow. An ex.-
tended use of such visual aids is just as weakening to the imagina-
tion as the refusal to use them at all is stifling,

In factoring quadratics it may be well to have cards with
spaces left blank and other cards with numbers on them to fill
in these spaces in order to show, visually, the possible combina.-
tions which should be considered as factors. Even a vocal listing
of such possibilities may encourage the pupil’s imagination to
make similar exploratory lists later for himself. In setting up a
word problem, a blackboard demonstration of possible choices
for “z” may be long and unwieldy, but it lays the framework for
the pupil’s imagination to make mental listings and manipulations
for himself. At an elementary level we want children to invent
their own problems in addition by playing store and making lists
of items to buy. Before they do this in their imagination it is help-
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ful to have real objects, tin cans, boxes, and paper bags, marked
with prices, for the children to manipulate and add. Later the
imagination images of new combinations of these prices create
addition problems for the pupils. In teaching problems in analytic
geometry 1t is well to solve the same problem several times with
the axex in different positions and to see what effect this has on
the =implicity and neatness of the procedure and the solution.
Later the students ean make a choice of the position of the nxes
with their imagination suggesting the various results. Without
the experience of the actual sensory perception of the results at
one time, one’s imagination has nothing upon whieh to base its
creativeness, These examples show the need for sensory learning
to stimulate the imagination in mathematies.

There are other reasons why mathematics tenchers should con-
sider the role of imagination in their teaching. Some people turn
very abstraet ideas into very concrete forms to aid the memory
and use of these id-as. Some of these forms are very artificial.
For example, Galton (100 made a stuey of the number forms
which some people create to vizualize the relationships between
numbers. Some people think of the number 1 at their left elhow,
and then the numbers 2 through 10 in a sweeping curve out in
front of them, other numbers trail off into xpace in a well-defined
curve which stays in their imagination in that same form to help
them with their quantitative thinking. Teachers need not encour-
age xuch imagination images, but they should realize that they
exist in the imagination of some people.

Our last appeal for an understanding of imagination images by
the mathematics teacher is based upon the feeling that creative-
ness and expressional activity can be a part of all school subjects,
and that mathematies is one which is eminently suited to such
activity, Instead of making our teaching a succession of memory
images, we should search for every opportunity to encourage the
free imagination, the speculative twist of perceptions, the courage
to thick and talk about what would happen 7f, the shared delight
of the new idea, the explorer’s enthusinsm for new physical terri-
tories transferred to the realms of the mind, and the fecling that
mathematics is also what you make it, not only what it has been
made.
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We started with the mundune facts of the physical stimuli
around us and have ended with flights of the imagination. Sensory
learning becomes a part of all mental activity and we have tried
to trace its influence in motivation, memorizing, the understand-
ing of eoneepts, problem-solving, emotional activities. and in
imagery.

RESPONSIBILITIES WITHIN MATHEMATICS TO IMPROVE THE USE
OF THF BENSES

We have now given the psychological basis for sensory learning
and tried to show why' this type of learning is needed for all types
of learning. It 1s the chief purpose of our entire discussion to im-
prove the teaching of mathematics by improving the use of sensory
learning in that subject. but we ~xhall stop our progress for n
moment to point out the meaning and importance of the converse
problem-—how can the teaching of mathematies contribute to
sensory learning in general?

Schools have a responxibility to improve citizenship, heslth
habits, and the use of the senses to gather knowledge through
perception. There are other responsibilities also, but these will
serve to illustrate the types of objective which pervade all sub-
jecte. Of course mathematics teachers do not have time to teach
the three topics listed above, but neither do any other teachers!
We may get teachers to agree that the mujor responsibility for
each topic lies in one area—citizenship in the social studies. health
habits in physical education, and sensory learning in art. But does
not science use sensory learning in its laboratory experiments,
English in descriptive writing, French in imitative acquirement of
pronunciation, commercial education in typewriting, social studies
in map reading, and phyxical education in tumbling? Where is
the opportunity in mathematics to improve the use of the senses?

In order to give definite examples within mathematies we shall
show how the teaching of mathematics can help to develop the
motor xkills, to improve attention. to improve perceptual dix-
crimination and estimation, and to eliminate perceptual illusions.
In order to make the examples from the teaching of mathematies
clear and distinet, from now on they will be numbered in order.
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Development of Motor Skills

Nome writers prefer to call “motor learning” by the title “sen-
sori-motor learning” or even “‘perceptual-motor learning” (19:
144 497, The teacher who wishes to teach motor skills should know
methods of performing the skill and specific practice techniques
both of which have proved successful in the past. In explaining
such techniques it will be found useful to use sketches, dingrams,
slow-motion motion pictures, skilled performances, specially de-
signed drills, and carefully formnulated verbal directions. There

Fig. 3,

are many informal occasions in the teaching of mathematics when
motor skills are used and developed.

Example 1: Some of the elementary formulas for volumes can
be illustrated by constructing models of the volumes and com-
paring the amount of salt, sand or dried beans which fill the
models. The pupils in Figure 3 are pouring dried split peas from
a pyramid to a prism with the same base and altitude to show
that the pyramid has one-third the volume of the prism. The boy
at the left is holding a model which ix made of a cone and cvlinder
with the same hase and altitude and shows the sume relationship.
These models are made of plastie, but cardboard would do very
well.

Eoreample 2: "The construetion of computing devices, such as
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those xhown in Figure 4. and their use will give practice in motor
~kills. The Napier's rods at the right are simple to make and
are understandable to any pupil who understands the multiplica-
tion tables, They are used to avoid the memorizing of such tables,
but are inconvenient to carry around. Simple, Hat cardboard rods
can be made rather than the wooden ones illustrated here. The
familiar devices shown with these rods are examples of abacuses
both commereial and pupil-made, and of a modern computing
machine. There ix i very heneficial, fine motor <kill involved in

Fig. 4.

the manipulation of all these instruments. Naturally, a great deal
of mathematies ix alzo learned.

The whole ficld of constructing and manipulating multisensory
devices is applicable to the development of motor-skills. More-
over, this ix better than buving such aids. Since their de<ign can
be fitted to the needs of the class, 2 great desl of mathematieal
learning i< involved wehile they are being made., They give the
pupil a real sense of contribution, their construetion develops a
sense of independence which our usual dependence upon mechani-
cal deviees inhibits. and homenude deviees are cheaper,

Some people go <o fur s to sav that all counting, even stlent
counting, is hased upon motor activities and diserete nerve in-
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pulses which place an upper limit on the speed which ecan be ob-
tained (14: 253). Thus oral counting and silent counting do not
differ by much in their speeds.

Improvement of Attention

If we are to improve the ability of an individual to attend to
stimuli we must look for methods to improve the factors which
control and direct attention and which lie within the observer.
Attention will improve if situations are encountered which call for
attention and which appeal to the interests, attitudes, set, and
experiences of the observer.

FExample 3: Here is a teacher demonstration which should ap-
peal tc the interest and attitudes of most pupils at the eleventh-
or twelfth-grade level. The teacher has in the mathematics class-
room an optical bcneh with light source, sereen and various lensexs
in holders. Object-distances and image-distances for each lens are
tabulated, and enough of them for each lens to allow conclusions
to be drawn. The pupils are then turned loose to find some con-
stant relationship which these distances satisfy. With or without
help they should come to the conclusion that the sum of the recip-
rocals of the object-distance and the image-distance is a constant
for each lens. Since the constant is larger as the lens is thicker we
will take the reciprocal of this constant and eall it the focal length.
So our experiment is summed up by the equation:

1 1,1
f‘E+E

Compare this method of approach with a straightforward one
beginning with the equation in z, ¥ and 2z and ehding witha simple
statement that lenses are an illustration of this general type of
functionality. Which approach would command the more at-
tention?

Ezample 4: We expect pupils to pay attention to geometric
forms in art around them; why not give them some sensory ex-
periences which will improve their set and thus facilitate such
attention. The construction of window transparencies (31: 86-87)
by the pupils will give them that background, and will improve
their attention to such forms.
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Our contention here is that the improvement of attention in
many separate situations by many different school subjects is
the only way to improve attention in general. It is impossible to
design exercises to improve attention without having attention
paid to something specific.

Improvement of Perceptual Discrimination and Estimation

The improvement of estimation is essentially a responsibility
of mathematics teachers and one that has been greatly neglected
because nothing very definite has been suggested to them.

All measurement ix really a comparison of an unknown amount
of material with a standard called a unit. Extimates of physical
quantities are really rough measurements when a low degree of
accuracy is sufficient.

There are four ways in which estimating is used: (a) estimating
results of arithmetical operations, (b) estimating values by using
judgments based upon past experience, (c) naming the number
of units which characterize a given amount of physical material,
and (d) choosing an amount of physical material which is equal
to a given number of units. The last two are those which we call
“estimates of physical quantities” and are the ones which can be
improved through sensory learning in mathematics.

It is impossible to form correct concepts of the meanings of
physical units without some concrete experiences with objects
measured in these units. Moreover, in order to assure some pro-
ficiency is estimating physical quantities, specific practice in these
skills must be given in school. Pictures of the material needed for
Examples No. 5-8 will be found in Figure 5.

Example 5: One of the basic decisions used in estimating is
that of “greater-les<.”” We can devise an exercise for the kin-
esthetic sense by taking a series of boxex (eight is a good number)
about 1” x 3” x 4”, and all exactly alike, and weighting them
with lead dress weights. Put no weight in the first. one in the sec-
ond. two in the third, and so on. Fasten the weights together and
to the box o they will not rattle. Fasten the hoxes shut with
scoteh tape, and paint the numbers 1 through S on the bottoms
of the boxex out of sight. Shuffle them on the table and ask some-
one to arrange them in order of weight. When he has finished,
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turn the boxes over to check the order of arrangement. Discuss
with him the method he used to make his decisions, since this
verbalizing helps to analyze the method. By leaving out every

Fig. b.

other box, or using just the first and last, various levels of diffi-
culty can be constructed to fit the situation.

Example 6: Another basic decision in estimating is “how many
times.” The teacher and the pupils should all have yardsticks
in front of them. Without announcing the distance, the teacher
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holds her hands a foot apart (measuring it on the yardstick) and
tells the class to hold their hands twice as far apart. Then they
measure the distance on their yardsticks and tell the teacher
what it is. Various distances and amounts should be practiced.
Simpler exercises such as drawing lines three times as long as
those on a mimeographed piece of paper, give practice in esti-
mating distances closer at hand and show new techniques of
estimating.

Example 7: Flags on sticks in wooden blocks should be pre-
pared for an exercise in estimating lengths. The pupil can he

Fig. 6.

asked to place two flags 20 feet apart and the result measured
with a steel tape. Then another pupil could be asked to move the
Hags to a new poxition and a third pupil to estimate how far apart
they are. These two exercises illustrate the two t ypes of extimating
of physical quantities. Each exercise should be followed by enough
dixeussion to assure that the class knows ways to improve skill
in estimating.

Example 8: The =<timation of shape ix a complex skill. Visual
estimation can be improved by having a page or shapes mime.
ographed. only one of which matches that of a lerger <hape held
up before the class. Thix exercise can he made axy or difficult.
The discussions which follow are very interesting and reveal novel
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wavs of estimating shape. Blocks cut out of plywood and nailed
to a plank provide an interesting blindfold exereise. Two of the
~hapes on cach plank should be the same. It isx easier if they are
in the =ame reiative position, but they need not be. The pupil
i~ to tind the similar shapes using the catancous sense without
visual help.

Feample 9: In Figure 6 will be seen a number of me: Nlrmg
devices whie h have scalex which need to be read and which require
<ome perceptual discrimination. The rulers, tapes, micrometer
caliper, and surveving instruments can all be understood by
secondary-school pupils and can be used to measure distances
and angles both inside and outside of the classroom. The discus-
sions of the construction of scales, the reading of scales and the
wuys to improve accuracy in readings are very beneficial.

Erample 10: Field exercises (28) with the surveying instruments
just mentioned ean be used to improve the perception of auditory
~timuli by planning for complex commands to be transmitted by
pupils to each other.

Erample 11: X faseinating exercise i that of finding how many
wiuys one can cover a plane using congruent regular polyvgons (29:
59 6718273 8200 If they must all have the same number of xides
there are only o few solutions, but if several types may be used

“the only restrictien being that each tvpe have congruent regular
polygons of the same number of sidesx). then many patterns can
be menle Figures 7 through 12 illustrate some of the results. The
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Fig. 8.
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class may wish to make puzzles f x‘qm some of their designs to sub-
mit to other members of the class.

Thexe are but a few of the types of exercise which teachers can
devise to improve the perceptual discrimination and ability of

V<A
o4

their pupils to estimate. Such exercises within the mathematics
class should improve these skills in other subjects as well,

Elimination of Perceptual [llusions

The improvement of motor skills, attention, and estimation
relate to changes which can be made in the individual. There are
some arrangements of stimuli which lead so consistently to the
wrong perception that the trouble seems to lie outside the in-
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dividual. These are called illusions. We know such perceptions are
wrong because instruments with more accuracy than our senses
convince us of our error. The occurrence of these illusions canno:.
be prevented, but we can convince our pupils that their sensory
learnings sometimes need to be checked against more objective
means of observation. The usual illusions of parallel lines and
unequal distances will not be given here since they are so familiar.

J \

TN

Fig. 13,

Ezample 12: The center of gravity of a figure may be per-
fectly understood but our senses place it in the wrong place (5:
136; 30: 25). Try finding the center of gravity of the drawings in
Figure 13 using your eyes alone. The geometric constructions for
them are shown in F igure 14. We have used the notation ./ (A, B)
to mean the midpoint of the line segment AB. X in each casge is
the center of gravity. In using these in class it is helpful to have
pieces of cardboard in the shapes shown, and to check the geo-
metric constructions for center of gravity by bhalancing these card-
boards on a sharp point or by hanging them from two different
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points on their edge and using a plumb bob to find two vertical
lines which will intersect at the center of gravity.

-

S 2eWM(B,C)

tmamn

Fig. 4,

Ezxample 13: There should be wooden models similar to the
geometric shapes in Figure 15 and thick enough to roll along on
edge. Pupils should be asked whether any other shape except a

Fig. 15,

circle will roll along a line so that the highest point is always the
same distance from the line. Their mental imagery usually says
no. Even when the shapes are shown to them they doubt it.
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Actual experiment is necessary to convince them. The theory by
which these figures are constructed might be given to them, or
they could be asked to work it out for themselves (24: 178-79).
Exrample 14: A common misunderstanding about conic sec-
tion= ix the difference between the shape of a parabola and of
an hyperbola. By showing how these are cut from a cone made of
clay, or from separate, congruent cones made of wood (such as
those in Figure 16), we are able to dispel the illusion that “the
parabola and hyperbola are really the same curve, but in one case
you have two of them.” The best way is to have the pupils cut the

Fig. 16,

clay or the wood themselves. The next best way is to let them
watch suen a procedure and handle the results.

By using sensory learning we can eliminate some perceptual
illusions and reduce the possibility of others. Once a person is
convineed that his sensex are not to be trusted in all cases where
fine degrees of aceuracy are needed he will beware falling into such
perceptual traps in the future. .\ rational use of the senses is some-
times necessary,

These 14 examples have tried to show teachers of mathematics
how senszory learning in their subject can have general effects
improving the uses of the senses as well as specific uses in the
learning of muthematies. We have found examples from the de-
velopment of motor skills, the improvement of attention, the
improvement of perceptual diserimination, and the elimination of
peres ptual illusions,
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IMPROVING THE TEACHING OF MATHEMATICS THROUGH BETTER USE
OF SENSORY LEARNING

It seems to be about time to get to our real reason for the pres-
ent discussion-—the improvement of the teaching of mathematics.
On the other hand, the three sections preceding this one should
certainly have some effect on mathematics teaching. The first
section summarized the background in psychology upon which
the later discussion is based, the second section showed how more
complex types of learning depend upon sensory learning, the third
section considered the inverse problem—how mathematics can
improve the use of the senses, and the present sectiou illustrates
the preceding discussion with examples from the teaching of
mathematics.

We shall not attempt to introduce any new psychological ideas,
nor to present any new mathem ‘tics, merely to bring the fields
of psychology and mathematics closer together by very definite
teaching suggestions. In fact, this whole section will be nothing
more than one example after another arranged in the same se-
quence as the ideas in parts I and II.

Improving the Teaching of Mathematics
Through Visual Sensations

Ezample 15: We have already noted that geometry is more
concrete than algebra. Thus, when possible, algebra should be
interpreted in geometric terms to clarify the concepts. In factor-
ing, each pupil could be asked to mark a piece of paper or card-
board as in Figure 17a and cut it out with scissors to see ithat

(@ 4+ b)! = a? 4 2ab + b?

In the light of our present discussion it is important that (a) each
pupil does this for himself, (b) actual cutting be done with scissors
since it is much more effective than merely fitting together puzzles
which have been previously cut out, (¢) any demonstration by
the teacher be presented after, not before, the drawing and cutting
by the pupil. The other illustration, Figure 17b, shows a similar
dissection of a wooden cube to illustrate that

(@ + b)* = a® 4+ 3a? + 3ab* + b
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It is pr Lably too much to expect that this model be constructed
by each pupil; instead, he will merely watch it being demon-
strated and then manipulate it himself. By using these devices
properly we can also show the expansions of (¢ — b)?und (a — b)3.

Fig. 17 a and b.

Any verbal description of how these pieces should be manipu-
lated is very long and involved compared with the experience of
trying to manipulate them, and .nat is just the essence of our
argument —the sensory learning is more direct and easier to fol-
low than the verbal generalization.

Example 16: The three diagrams in Figure 18 are geometrical
representations of the atom. In what sense are they mathemati-
cal realities and how are they attempting to use visual sensa-
tions? Clertainly no scientist would proclaim that we might some
day design a microscope strong enough so that an atom can
be perceived by the eye in the form of one of these pictures. They
are visual aids to thinking. Some of the properties which we have
discovered in the atom are remembered and manipulated mentally
easier by associating them with the particular visual sensations
from these diagrams. It seems appropriate for us to use these as
exainples here because o much mathematics we try to teach is
highly abstract and needs visualization (or other sensory associa-
tion) similar to that shown here for the atom. Indeed, let us not
be too quick to draw the line between mathematics and its appli-
cations lest we cut deeply into our subject and, fearing to teach
some applications, exclude some mathematics. It may be well
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worth the tinie in mathematies to draw and construct diagrams
for atoms, discussing why cubes, circles and ellipses have been
chosen to represent physical concepts.

—— e —
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Fig. 18.

Improving the Teaching of Mathematics
Through Auditory Sensations

Ezample 17: A very effective demonstration concerning area
and volume can be presented using gunpowder and clay. A cube
of clay two inches on an edge is constructed and its area of
24 square inches is computed. As it is cut into halves, quarters
and eighths the area is shown to become 32, 40 and 48 square
inches, while the volume stays the same. This demonstrates the
idea that the total exterior area of a constant volume increases as
the size of each piece decreases. In order to show a practical ap-
plication, we ignite equal weights of two types of gunpowder, and
note that the time to burn, brilliance, volume of sound, and
density of smoke are functions of the size of particles of the gun-
powder. The class never forgets this demonstration.
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Ezample 18: Oral anithmetic drill is a venerable method of
varying practice by using the auditory sense. It is not to be
spurned because one is seldom asked to do such arithmetic prob-
lems after merely hearing them. It is another method of presenta-
tion: and the facts to be learned are strengthened because they
are abstracted from many tvpes of situations, from many avenues
of sensation. Commercial records of arithmetic drill have been
made available, but there is still a tremendous amount of investi-
gation open to determine the types of aural presentation which
are interesting and effective. Ave there recorded stories which
should be available to schools as well as the hooks and sets of
pictures we now have to introduce number concepts? What hack-
ground in the history and present-dayv applications of mathe-
matics should become available on recordings so that scholarly
information and professional radio performance might increase
their value?

Improving the Teaching of Mathematics Through
Olfactory and Gustatory Sensations

Example 19: A glass of water at room temperature is placed
before a blindfolded student. Another student adds a gram of
sugar or salt once in a while and the blindfolded student tastes
it every ~o often. It should be tasted more often than material
is added. The number of grams when the taste is first detected
should be recorded. A distribution for each student or for a whole
class will lead to discus~ions of statistical concepts. If some stu-
dentx are found who are fairly consistent in their decisions it
might be well to continue the experiment with different amount
of water to begin with and to see whether the amount of material
and the amount of water seem Lo be linear functions of each other.
Another series of experiments can be devised as the time which
a given xubstance (ammonia, vinegar, or oil of citronella) is
detected at a given distance.

Improring the Teaching of Mathematics Through
Cutaneons, Kinesthetic, and Organie Sensations

Leample 20: Previous diseussions have referred to the use of
these sensations. .\ great deal of fun and learning of mathematies
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will result from experiments with sensations to illustrate the
Weber-Fechner Law in psychology (27: 91-103). In one form this
law says, “Lqual differences between sensations means equal
proportion between stimuli.”” .\ weight of 40 grams is increased
gradually until 75 per cent of the time it is judged to be heavier
than the original. We shall eall this the threshold of diserimination
for 40 grams. The same experiment ix repeated for 80 grams and
for 200 grams. The graph of the results will lead to the topic of
exponential variation and logarithms. Many other experiments
are possible.

Lrample 21: Tt ix known that some people find it necessary
to count to extablish their addition facts for some time after they

] 2 3
H 5 4
¥ 8By

Fig. 19,

are understood. In order to facilitate thix, they actually locate
parts of the figure which they touch with a peneil or with their
finger and count. After the physical movement of the hand is un-
necessary, the eve will follow that pattern as an aid. One student
reported the patterns shown in Figure 19.

Erample 22: The practice of using one'’s fingers to count or
to keep track of the figure to carry in addition is fairly com-
mon. [t seem= that such practices should not be condemned, in
some cases they should even be taught as a first sensory approach.
The danger is that such immature solutions to problems will per-
sist. Thus pupils should not be made ashamed of having counted
on their fingers or made to feel that they have to hide it; it is a
natural approach to numbers through sensations. They should
be hown mare efficient ways of reaching number conclusions. but
it may be possible that some people will always count on their
fingers.
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Fxample 23: The entire subject of models to he used in the
teaching of mathematies is connected with the need for sensory
learning. Geomeotrie forms may acquire considerably more mean-
ing if they are handled in conerete forn. The models in Figure 20

Fig. 20,

show some regular polvhedrons on the right and some plaster
models of <pherex on t..e left. The regular polyvhedrons can lead
to faseinating discussions of relationships between the number of
edges, vertices, and faces. Fuler's theorem can be arrived at in-
ductively with a little help and checked for non-regular poly-
hedrons. Pupils can be asked what figure results when the center
of each face of a polyhedron is connected to the centers of all
faces adjacent to the first one. Thix ix a little difficult to visualize
without the help of a model. If the model can be touched and
turned about. the learning is that much easier, The concept. of
reciprocal figure can be built as shown by the following table:

ORIGINAL { i e . e e v aepe INSCRIBED
FOLYHEDRON I YERTICES EDGLS FACES POLYHEDRON
Tetrahedron ' { 6 4 Tetrahedron
| . )
Hex:ahedron : 8 12 6 Octahedron
Octuhedron ! 6 12 8 Hexahedron
])nl ll'-';th'(il‘ull ) 20 3() 1.) I(’l)h‘ilh(‘(il‘()ll

[eosahedron 12 30 20 Daodeenhedron
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After the table ix built by laborious counting, the power of me-
thodical thinking can be emphasized by deriving some of the more
difficult fact= from =ome of the simpler. For example, the twelve
faces of a dodecahedron can be counted fairly easily; then the
number of edges can be found by =aving, *“I'welve faces each with
five edges gives 60 edges, but each edge of the solid figure serves
two facex, therefore the solid has 30 edges.”

The spherical figusex in our picture are made of plaster and
<how some of the difficult concepts such ax spherical polygon and
spherical triangle, lune, zone, spherical pyramid, spherical wedge,
xpherical =egment, and spherical sector. On the whole spheres,
painted with white enamel, one can draw spherical triangles, polar
triangles, quadrants and erase them. The manipulating of these
figures is just as important as seeing them.

Improving the Teaching of Mathematics Through the
Use of Muscular Skills

Example 24: The concept of locus can be developed in the
following manner. Either a bar or horseshoe magnet should be
placed in the center of a fairly large piece of white paper, about
20” x 30”. A very small compass is then used to trace the lines of
force from one pole to the other. Tt 1 stepped along from point to
point unti' the locusx develops. This is a faseinating occupation
and once a diagram ix started it can be left for many pupils to
work on and to huild as complete a pattern of lines as time allows.
Figure 21 shows a tvpiecal result for a bar magnet.

! \ I! S \l /I
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Fig. 21.

Erample 25 Another use of muscular skills is the creation of
interesting designs by curve-stitching (21: 82-85). There are
three basie mathematical ideas which are used in these designs,
and they are shown in Figure 22. The first is a regular polygon
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Fig. 22,

and its diagonals. By making different selections of the diagonals,
a variety of designs results. The second figure shows a parabola
traced by its tangents. In order to draw this, one takes two in-
tersecting lines and steps off equal line segments on each line (the
segments on the {wo lines do not need to be equal, but they usu-
ally are). Connect any one of these points on one line with any
one of the points on the other, then move from point to point
on one line going toward the point of intersection, on the other
moving away. It is not necessary to have the point of intersection
the end point of any line segment, but it usually is, on each line.
The third diagram shows a curve of pursuit. Start with a curve, I;
a point, P, not on{; and a point @ on I. (In our diagram, ! is a
straight line but it need not be). Then let QQ, = Q.,Q, = Q:Q;,
and P, lie on PQ, ¢, lie on P\Q,, P, lie on P.Q, , so that PP, =
P\P; = P,P;. Then these lines outline the curve which a dog,
starting at P would take if he always aimed at a rabbit starting
at @ who runs along curve [ at a constant rate of speed. Try [ as
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a circle and P’ as its center; investigate the effect of changing the
ratio between the speeds of the two. Have pupils formulate pur-
suit problems and try them out in the schoolyard. Introduce
colored thread to stitch artistic designs. Investigate the backs of
the cardboard where the stitching is done to discuss the economic
ways of carrying over the thread. A good deal of excellent mathe-
matical thinking will result.

Improving Attention by
Controlling the Stimulus

Erample 26: The stimulus :nay be controlled by controlling its
intensity or its contrast. The presentation of geometric forms as
intersections of eurves is possible; when these curves are presented
in striking black and white diagrams such as those in Fig. 23 it is

Fig. 23.

impo=sible not to be attracted to the diagram and to search for
the geometrie forms described (1: 64-81).

Example 27: In Figure 24 we see a demonstration that a tra-
jectory is a parabola. The wooden stick has strings attached at
equal distances; the lengths of the strings are proportional to the
<quares one, four, nine, ete. At whatever angle the stick is held the
beads at the ends of the strings as,ume the form of a parabola.
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Fig. 24.

This is an interesting statement to prove (30: 43, 45). The stream
of water from the nozzle is kept in a constant position and the
bead parabola fitted to it. Then it will he seen that the angle at
which the stick is held is the same as that of the nozzle. Of course,
this takes some time to plan and set up. But I defy any teacher
to plan this demonstration with his pupils and to put it on in
front of the class without discovering that change and movement.
in the stimulus will command the attention of the pupils. Muthe-
matics will pick up in interest from that day on.

Improving Attention by Controlling the Quserver

Example 28: Everyone has seen a pendulum swing back and
forth in a clock, or seen a stone swinging on the end of a string.
The interest of most individuals will be caught by the question,
“What iv the funetion conneeting the lengtl of o pendulum and
e time it takes to swing back and fortl>" Long and short
percluluns, from two inches to forty feet, could be sot up, and
measurements made. There will be plenty of interest and atten-
tion. and tinally the figures will vield the results:

T = kv
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Later thix may be made more sophisticated by showing that

T =2 1/ L
"Wy
but this is not necessary.

Example 29: Everyone knows about mirrors and will be caught
by the experiment of trying to find a formula connecting the angle
in degrees. 4. at which two mirrors are set, and the number, N,
of imares of a light, L, arranged as in Figure 25. It is wise to make

Fig. 25. Light reflected in folding mirror.

the original assumption that A is an exact factor of 360. It can
be then found inductively that

_ 360 _
A

[t is important in this demonstration to vary the angle between
the mirrors and stop whenever another image is fixed. Start with
A = 180,

Example 30: Soap bubbles are familiar objects and will keep
pupils' attention until the mathematies ix extracted (30: 97-99).
In Figure 264 we have a wire ring with a handle; inside is a
loop of thread attuched to the ving in three places. If this is placed
in a soap solution and the soap film inside the loop broken by
the corner of a piece of paper then the loop will take the form of
a circle as shown in Figure 26b, This is a dramatic and convincing
demonstration that the cirele is the greatest area with a given
perimeter. The reasoning goes like this: The surface tension in
the <oap film tends to make that area a~x small as possible; since
the wire frame is fixed. the area of the shape of the loop is made as
large as possible. Of course this is not a proof, but it is convincing.

Y 1

t
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Fig. 26 a and b.

It catches that interest and attention, which is a prerequisite to
learning the mathematics.

Improving Perception Through Better
Organization of the Stimulus

Ezample 31: The perception of the number of objects in a
group is very important. One of the most important factors
making this perception easy is the type of organization in the
stimulus. One set of examples will be seen in Figure 27. Flash one

X X X X X
Xy X X X X X X
Xy* X XX x XXX X X X
¥ x X x X XX X X X XXX X X X

a b ¢ d e

X X X X X X

) S xx xx X
X X X XXXXX

X X X X

X X X X y X X X X XX XXX X

f g h i i

Fig. 27.

of these before an individual and increase the time of presenta-
tion until the correct number in the group is perceived. Then ask
him to tell how he determined the number. Here are some of the
typical responses received when this was tried with college
students:
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(a) 1,2,3,4,5,6,7,8,9

(b) 3,6,90r 3 times31s9

(¢) 4and 5is 9

(d) 2,4,6,70r3and 4is7

(e) 2,4,6,90r6and 3 is 9

(f) 4,7,90r4and 5is 9

® 1,2,3,4,5,6,7,8,9,10

(h) 9 minus 1 is 8.

(1) 2,4,6,8,9

(j) 42'spluslis9or4 and 5is 9
Here is a field for more fascinating research in perception of
number groups.

Fxample 32: A familiar example of organizing the stimulus
to achieve better perception is the use of colored chalk in drawing
plane geometry figures. By drawing corresponding sides of con-
gruent or similar trian;zles in the same color, by shading in areas
to give them a unity, by keeping the coloring of the diagram in
pace with the accomplished part of a proof we can add much
to the perceptions organized and abstracted from perceptions.

Improving Spacial Perceptions in Mathematics

Example 33: The development of the concept of ordinal num-
bers is esse..tially one of spacial relationsapplied to mathema-
tics. This is evident in the common use of visual number scales
to represent the ordinal scale and the extension of this number
scale to negative numbers.

FExample 34: 1t is difficult to answer the question, “What is
the locus of a point on the circumference of a circle which rolls
without slipping on a straight line?”’ Few get this correct the first
time and many will not believe the answer unless they can actu-
ally see the curve formed as in Figure 28 by rolling a wooden circle
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along the chalk tray and letting a piece of chalk which projects
through a hole in the circumference trace on the blackboard.

Improving Temporal Perception in Mathematics

Example 35: In discussing problems of temporal perception a
great deal of mathematics can be learned, and the improvement of
temporal perception will improve the learning of mathematics. Re-
action time experiments (27: 207-18) are a good illustration. Have
a row of pupils line up each with a pencil in one hand. Each one
watches the pencil of the person at his left and raises his pencil
when he sees that raised. The time for a signal to pass from the
left to the right of the line is determined and, by dividing by the
number in the line, we find the average simple reaction time. This
can be compared with the simple reaction time for auditory and
tactual sensations. Then the discrimination reaction time and the
choice reaction time might be investigated. The ideas sound com-
plicated but they are not, since we need not enter into psycho-
logical explanations of “why” or “how.” Arithmetical calcula-
tions will have more meaning when attached to such perceptions.

Improving Perception of Movement in Mathematics

Ezample 36: It is somewhat difficult to see the path of a ra-
pidly moving projective and to analyse its movements visually,
A mathematical discussion and justification of the parabola will
sharpen the perception of all trajectoric. thereafter (1: 75-76).
We carry away from a situation what we bring to it. In Figure 29

NN
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we =ce a graphical way of explaining the parabola: The horizontal
distances are equal because we shall assume that any initial push
in that direction remains constant; the vertical distances are in
propottion to the squares (1. 4, 8 16, ete.). Thix latter sequence
ix explained thus:

¢ 0 1 2 3 4 O ¢
" 24 2k 2k 2k 2k 2k ... 2 S
" 0 2k & Gk Sk 10k .. 2k .-
N 0 k 1k Ok 164 25k .- ek

If the acceleration is constant, 2k, then the velocity at any time,
/. is proportional to the time, 2&¢, and the distance, s, is propor-
tional to the average velocity:

0

By changing the amo. ¢ of horizontal push, different parabolas
may be obtained. Graphical experiments with initial verti-
cal pushes, and horizontal winds which give acceleration can be
arried out. Thix is altogether a much more satisfactory way to
pereeive motion of falling particles than complicated experiments
with photography or electrical sparks.

Improving Motivation in Mathematics

Example 37: We have said previously that motivation is aided
by clarifying the goal and many of our examples should, there-
fore. have demonstrated the use of sensory learning in mathe-
matics to improve motivation. However, here are two more.
The concept of probabiiity is one of the easiest to motivate
through references to bridge hands, shooting crape, lotteries, rou-
lette, one-armed bandits, and other games of chance. Another
conerete e, sensory) example for motivation is Buffon's needle
problem ¢15: 246- 47 A\ uniform needle of length I is dropped
upon a plane surface ruled with lines I units apart, where H is
greater than Lo If an experiment is performed and the ratio of the
number of times the needle erosses a line to the number of times it
i< dropped is computed, it will be found that this value approaches

3
the number -:]/1’-. It ix not necessary to prove this fact to appre-
™
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ciate the fact that the theory of probability summarizes the
results of experiments which may be very long or difficult to
carry out. lenee one ix motivated to study the earlier, more
accessible topies of probability:,

Erample 38: A\ familiar problem, but one which is always
capable of motivation is the 64 = 65 problem shown in Figure 30.
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Fig. 30.

If a square is ruled into 64 smaller squares and cut as shown. and
then the four pieces rearranged into a rectangle which ix 5 by 13
units, we seem to have shown that there are nov: 63 small squares.
The interest and the subsequent computation of the angles at
the corners of the rectangle by simple, right-triangle trigonometr A
serves as an excellent motivation device for that subject. Be-
cause physical materials have been drawn, cut and rearranged,
one feels that this is a convincing proof. The triumph of mathe-
matics over the senses in final conviction is no less important than
the initial feeling, due to the senxory presentation, that this is a
problem worthy of attention.

Improving Memorizing in Mathematics

Erample 39: Memorizing still is, and always will e, important
in learning mathematics. Recent attacks have rightly criticized
meaningless memorizing. After meaning is established, drill is
necessary. Many recent devices in the form of games have heen
produced for arithmetic teachers. Figure 31 shows a number of
thexe. The important point is that meaningless repetition of num-
ber facts, even though using a large variety of the senses. and
those very intensely, will be of little use compared with the
plaving of meaningful games during, and after, the sighificance
of each number fact is established.
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-

Fig. 31.

Improving the Understanding of Concepts in Mathematics

Feample 40: Many times have we stressed the fact that con-
cepts, clear in the mind of the teacher, cannot be transferred
in that form into the minds of the pupils. A sl,w and ingenious
presentation of examples and applications of the concept must be
given in terms of concrete sensations so that the mind of esch
individual pupil can build his own concept. A good example is
the concept of large numbers. Can you imagine 2 objects? Also
10 objects? How about 1002 What happens to the meaning of the
concept 34.567,398,682,905,562 when we try to interpret it in
our imagination as a collection of objects? Recently a radio com-
mentator, in mentioning the size of the current budget of the
United States government tried to help his radio audience by
telling them how many dollar bills this was for each individual in
the United States. how long it would take to count all the dollars
if one counted one per second, how high a pile it would make if
piledd up, how long a strip, if the dollars were laid end to end, how
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big an area it would cover if the dollars were laid out. and how
heavy a pile of bills this would make. Here is an excellent series
of appeals to sensory perceptions, in terms of familiar sensations,
to give meuaning to the concept of the very large number of dollars.
‘The success of the establishment of this coneept depens upon
the amount of familiarity the audience hus with the counting,
size, and weight of dollar bills, and alko with the power of the
imagination of the audience to extrapolate these sensations to
bigger amounts. ¢

Example 41: The concept of complex roots to cubie equa-
tionx 1= complicated enough <o that all sensory aids to its under-
~tanding are worth considering. In Figure 32 we have a method
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Fig. 32,

of construeting such a visual sen=ution to strengthen the concept
for the equation y = 3 — & - 6. The figure is composed of a
borizontal complex e-plane and o real y-axis. The graph in che
r-plane 1= a hyperbola and consists of all values of # whieh are
complete votplex and which give “eal values to 5. These real
values of y lie in the right hyperbolie evlinder whose elements pass
through the hyperbola in the r-plane. These y values form the
two cotuplex branches shown. By appending the graph of y for
real values of oo we have the total graph and the complex roots
shown in the figure. Fven though this explanation is complicated
and needs more detail (10:288-91), it would be much more so
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without the visual model to accompany the explanation. A tae-
tual model would be even better.

Improving Problem-Nolving in Mathematics

Feample 42: One of the most effective ways of presenting
a problent situation is through sensory learning. Too often the
problems for solution are verbalized and generalized in an abstract
form hefore the pupils get them. The important steps of realizing
that there is 4 problem in the situation, of formulating that prob-
lem. and of sloughing off the excess information are seldom done
by the =tudents. Here is an example of how sensory learning can
present siuch a problem. Stand an ordinary platform balance from
the physies or chemistry laboratory on the desk (30: 28). Rock
it back and forth and show that the surfaces always remain hori-
zontal. A=k the class why? After a proper amount of time, they
should be able to draw a diagram similar to Figure 33. This shows

S U ey

I

(@ @

Fig. 33,

the mathematical statement of the situation. We can show the
need to define the word “horizontal,” which is not usually part
of geometry, as perpendicular to “vertical”; and the latter as a
line through a given point and the center of gravity of the earth.
If the base of the balance is horizontal and A B and CD are equal,
and A7) and B are continuous pieces also equal; and if EFG is
continuous so that there are pivots at A, B, C, D, E, and F, we
can prove that the top two platforins are also horizontal. The
polishing ol the statement of this problem from the physical situa-
tion and its proof may take as long as the proof of ten problems
which have been presented in more abstract form, but the former
experience ix, at times, much more valuable and should certainly
not be excluded.
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Improving Emotional Learning in Mathematics

Example 43: The auditory sensations are often neglected, vo
here is an example using them. Various piano chords, first with
two notes, then three, and possibly more, should be played for
the class. In each case they should write down whether the com-
bination sounds pleasant or unpleasant. Absolute agreement be-
tween members of the class is neither expected nor important.
In fact, the degree of pleasantness or unpleasantness might be
discussed on the basis of the votes. Combinations which are
clearly considered to be pleasant or unpleasant by a majority
should be anclysed further by introducing the frequencies of the
notes. The ratios of these combinations should turn out to he
simpler for pleasant combinations than for unpleasant ones (5:
339). Such relationships between the arts and the sciences may
open the doors to other interests for many pupils in the class.

Ezxample 44: If we wish to approach the question of Dheauty
in design by means of regular repetition of geometric forms, one
way to do this is to talk about the kaleidoscope. This leads to the
problem of repeated reflections in a number of mirrors (7: 162-64).
Since a plane mirror is the perpendicular bisector of each line
segruent connecting a point and its image, we are immediately
at the mathematical statement of the problem. In Figure 34 we sec
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Fig. 34.

the results of reflecting a point in four mirrors forming a square or
in three mirrors forming a triangle. The regularity of these figures
is responsibie for both the geometric beauty and the geometric
simplicity. The diagrams on paper are not enough. Pupils should
be encouraged to try combinations of mirrors and a lighted candle
and then to justify mathematically the images seen.
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Improving Imagery in Mathematics

Frample 45. The improvement of memory images has been
considered in connection with memory; we shall here consider
the improvement of imagination images. One characteristic of
such imagination images is their transitional nature. There are
many mathematical concepts, the majority concerned with limits
and infinity, which have this characteristic also. The imagination
images connected with definitions in the calculus of tangent to a
curve, arca under a curve, volume of a solid of revolution, length
of a curve, and many other elementary concepts require a certain
amount of imagination to see the limiting process as it enters into
the definition. Diagrams in books and on the blackboard help;
motion pictures would help even more. There are, however physi-
cal phenomena which exhibit this transitional nature also. One
interesting example is the formation of Chladni figures on a vibrat-
ing plate (30: 187). By clamping a metal plate tightly at the
center and causing it to vibrate at *he edge we get such figures
as that seen in Figure 35. It is necessary to sprinkle sand over the
plate before it starts to vibrate and to hold the plate at some
point to make a node. The sand will collect where there are nodal
lines and be thrown off where the plate is vibrating. By continuing
to bow and to shift the position of the finger which is making a
nodal point we gev one figure changing into another. It is easy to
say that the plate is vibrating in sections which can be determined
mathematically and which are usually symmetric, it is often neces-
sary to help the imagination by seeing the result in sand.

Example 46: Our main argument here has been that sensory
learning ix a prerequisite to more abstract concepts. There are
some people who also enjoy moving in the other direction in their
imaginations--they will start with mathematical abstractions and
express them in concrete, sensory form. One of the most delight-
ful attempts at this has been in the books by Lieber and Lieber,
for example The Education of T. C. Mits (20). At first the draw-
ings seem merely entertaining and piquant, but when viewed
in conneetion with the text, which itself is disarmingly entertain-
ing. we see a visual and imaginative interpretation of mathemati-
cal ideas which clarifies as well as amuses. It is as impossible to
catch the appeal and explain it to justify the right word in
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Fig. 35.

Shakespeare or the appropriate phrase in Beethoven; one element
of imagination is its spontaneity and elusivenes:. There is far too
little of 1t in mathematics; that may be one reason our subject is
sometimes considered cold. The example, Figure 36, is completely
inadequate without the accompanying text and fellow drawings
It 1s merely an invitation to see the original.

Ezxample 47: Some mathematical concepts defy the imagina-
tion. How would you draw a curve which hecomes infinite in
length but is closed, continuous, and surrounds a finite area? Figure
37 illustrates a curve which does this. By continuing the process
begun in these diagrams, we get a curve of the desired type as
the limit (17: 343-55; 29: S3-85). Is not the connection between
sensory learning and imagination clear? How could one imagine
the pathological answers to the questions posed above without the
visual presentation of the niethod by which these curves are con-
structed? Of course, a verbal explanation and description of this
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Fig. 36.

process is possible, but one need only try to formulate it to see the
cumbersome and confusing substitute which it is for a sensory
presentation.

Now we have finished our attempt to give specific, concrete
examples of how sensory learning can be employed in the teaching
of matheru: tics to improve aspects of that teaching which we all
desire. We tave applied this to the use of visual sensations; audi-
tory sensations; olfactory and gustatory sensations; cutaneous,
static, kinestheiic, and organic sensations; and to the use of
muscular skills; also to the improvement of attention by control-
ling the stimulus and the observer; to improving perception by
better organization of the stimulus; to the improvement of spacial
perception, temporal perception and the perception of movement
in mathematics; and to the improvement of motivation, memoriz-
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Fig. 37,

ing, understanding of concepts, problem-solving, emotional learn-
ing, and the formation of imaginatior. images. These are the
contributions of sensory learning to the teaching of mathematics.
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Previously we had shown how mathematics could improve
sensory learning and had used as our examples there the develop-
ment of motor skills, improvement of attention, perceptual dis-
crimination, and perceptual illusions.

In order to place this whole discussion in the right framework
we began with a short summary of the concepts of sensation,
attention and perception, and the relationship of sensory learning
to higher types of learning such as motivation, memorizing, con-
cept formation and use, problein-solving, and emotional learnings.

May we end on this note? Sensory learning is not everything,
but it is very, very important.
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5. Language in Mathematics
IrRviN H. BRUNE

WHAT IS LANGUAGE?

LANGUAGE can help and language can hinder learning. Intelli-
gent living requires that we transmit thoughts; we communicate
by means of language. Through language man has shared his dis-
coveries, widened his understandings, preserved his learnings,
developed his civilizations, and educated his children. Thus lan-
guage has benefited mankind. Yet, because at best it reveals
meanings imperfectly, language has produced misunderstandings,
bred dissensions, and even fomented wars. The power of language,
like the force of fire, can effect good or ill in human affairs.

In the teaching of mathematics language has also bhoth suc-
ceeded and failed. Whenever it has led pupils to enjoy the xatis-
factions of thinking through a mathematical situation, language
has helped. Whenever it has engendered lack of clarity as pupils
seek to solve problems, language has hindered. In this chapter we
shall consider a few principles of communication, and make a few
suggestions to teachers. We shall aim to help teachers and pupils
scrutinize language. It wili be a terse treatment, but even a modest
study of language: helps us to perceive the power of words. In the
drama of thinking, language plays the lead.

Suppose that we consider examples:

1. An experienced teacher merited recognition. For 30 years she
taught mathematics to boys in a correctional school—a place
where one tries hard to salvage vouthful deviates. Of course the
teacher sought no honors, but some of her friends gave a dinner
for her. When pressed for the secret of her success, she spoke
neatly: “The boys and I have always understood that right s
right.”

2. A pupil in algebra also spoke neatly: “Irregardless of its
sign a number squared gives a positive result.”

3. Another pupil erred often by making hasty generalizations
“All generalizations,” he said, “are false.”

156
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4. A girl said, “The more T correct my arithmetic, the worse it
hecomes."

Fach of the four foregoing illustrations reveals a weakness in
language; we note that such language hinders communication.

The teacher's words pleased her friend: but the words meant
little. We who seek to improve our own tenching get no specific
help from the truism “right is right.”

The pupil meant well, but double negatives in English follow a
grammatical rule similar to the mathematical rule he had in mind
about negatives. The word “‘irregardless’ upset his message; he
simply didn't say what he thought he was saying.

The other pupil spoke profoundly, but his statement couldn’t
hold. “All generalizations are false” includes itself, and therefore
denies itself.

The girl corrected her arithmetic; hence it couldn't become
worse. She, too, unwittingly upset her statement by her own
words.

Here are excmples of another sort:

3. “Arrange six toothpicks to form four equilateral triangles.”
Mary proposed this puzzle.

6. Jim, a third-grader, remarked that ““Cokes cost 7¢ apiece,
=0 vou can get three cokes for a quarter and have 4¢ left.”

7. Tim in Grade II said that “there are 3 tens in 30, and one
ten has 2 fives, and so 30 has 6 fives.

8. The eighth grade defined and redefined ratio until they agreed
that “'a ratio compares by division two numbers expressing the
same kind of units.”

9. Nally, a ninth-grader, said, ““A circle is a ring around a point.
If you measure to the point from places on the ring vou always
get the same distance.”

The last five examples show strengths of language; we see how
language helps communication.

Mary with a minimum of effort entertained her classmates with
a simple, clear challenge. Her words were concise, nice, precise.

Jim showed that he understood a quantitative situation and
could convey his thoughts about it.
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Tim handled a child’s syllogism based on a thorough under-
standing of certain numbers.

Discussion by a group tests a statement. The eighth grade re-
thought and altered their words until they produced a highly
refined statement.

Sally’s description of a circle qualified as a good definition: it
contained simple words; it put circle into a class; it distinguished
circle from other rings; it was brief.

Teachers of mathematics know that mathematics says more in
fewer symbols than any other language. The examples 56,7, 8
and 9 we have just examined attest to the clarity, conciseness, and
precision of mathematical statements. Spitzer lists three state.
ments that show how the language of mathematics enhances a
report:

a. During recent times some of the original soil of our cultivated
slopes has washed away. (b) During the last five years two inches of
our original soil has washed away. (c) During the last five years about
one-fourth of the eight inches f the original soil has washed away (29).

Mathematical language facilitates thinking by complementing
ordinary language (as in Spitzer’s example above), and it also
suggesis solutions to problems. Let us look at an example. Meas-
u ements have shown that gold loses about one-nineteenth of its
weight if it is weighed in water 1ather than in air. Similarly, silver
weighed in water loses about one-tenth of its weight. If, then, a
quantity of an alloy of gold and silver weighs 12 ounces in air
and 11.16 aunces in water, how much of the alloy, weighed in air,
is gold, and how much is silver? The power of mathematical
symbolism appears when we let n represent the number of ounces
of gold, weighed in air, in the alloy. Then 12~ n represents the
number of cunces (weight in air) of silver in the allo s. And the
equation +§n + Y5(12 — n) = 11.16 both states concisely the
conditions of the problem and suggests clearly low to solve the
problem. As Sol Worth explained to Matt, his younger brother,
“To solve an equation, you undo it.” The results, n = 7.6 and
12 — n = 4.4, represent ounces of gold and silver in the alloy.

Mathematics as a way of thinking concerns itself with languag .
Mathematics begins with terms understood and accepted without
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definition by all concerned. “Number,” ‘‘counting,” ‘same,”
“equals,” “plane,”’ *‘distance,” “point,” “path,” are among those
often thus used. Uxing undefined terms as key words, students of
mathematics then agree on certain definitions. A locus, for ex-
ample, is the “path’” of a “point” moving according to certain
accepted conditions. If the “path’ is restricted to a “plane’’ and
if the “path” must everywhere be the same ‘‘distance’ from a
chosen **point” in the “plane,” then the locus may be given a
name, such as circle. Further assumptions, often called postulates,
are then agreed on. These statements can be linked together to
form proofs. If. for instance, we agree that (a) equal circles have
equal diameters and (b) areas of circles vary as the squares of
their diameters, then we must agree that (c) equal circles have
equal areas.

This kind of reasoning lies at the heart of mathematics. The
conclusions, of course, come from the assumptions. Obviously,
faulty language can addle the process. WWhen meaning eludes us,
correct convlusions can evade us too.

A few examples indicate how language stymies conclusions:

10. “Like signs give plus.” Pupils glibly say these words, and
reach wrong conclusions in algebra.

11. Mr. Parfit joined a cult and testified that ‘“‘the new order
changed the course of my life 360°.” Somewhere, somehow lan-
guage led Mr. Parfit to a ridiculous conclusion.

12. A junior high-school pu~il averred that he could solve a
problem about ages, ‘“by mathematics but not by algebra.”
Language apparently threw him for a loss here.

13. Usually no fewer than 90 per cent of a high-school class will
choose an income of $4000 annually with an annual increase of
$200 as preferable to an income of $2000 semiannually with a
semiannual raise of $50. Language makes the worse proposition
seem to be the better.

14 A lad argued thus: If the seventh problem is worked cor-
rectly, the answer is 12. I got 12 for the answer when I worked
the seventh problem. Therefore I worked the seventl problem
correctly. Here plausibility of language replaced validity of rea-
=oning.

Mathematics deals with clear, consistent, concise, and cogent




160 THE LEARNING OF MATHEMATICS

language. But language does not always help to the degree in
v uich it is mathematical. The statement “Riemann’s straight line
is endless, but finite” is consistent. Yet few high-school pupils
understand it. Its meaning doesn’t transfer becsuse the pupils
lack experience with Riemannian geometry. Bertrand Russell’s
“The number of a class is the class of all those classes that are
similar to it"” (28) met out of context also puzzles pupils. The
pupils again lack background; they aren’t ready linguistically.
For language succeeds only when meanings transfer. The sender
must say what he means in words that suggest to the receiver
what the sender had in mind.

Accordingly, students of language count any device for trans-
mitting meaning as language. Signs, gestures, spoken words, writ-
ten words—all serve as symbols to suggest and recall meanings.
When Jack surreptitiously spells out words to be seen only by
fellow members of the Beaver Patrol he deals in language just as
surely as a senator does when he puzzles people with polysyllabic
profundity. So also Jack uses language when he senses a problem,
states it, translates it into equations, and resolves it by solving
the equations. Further, the Zulu beats out messages on tom-toms,
and the florist distributes cards listing the language of flowers.
All people use language of some sort to exchange ideas..

The primary purpose of language, then, is to convey meanings.
Any device which does so is language. And we wish to make our
language a benefit, not a detriment; it should help, not hinder.

WORDS AND MEANINGS

Words are links in the chain of communication. We remember
reading in Longfellow’s poem that Paul Revere arranged with his
friend: “One, if by iand, and two if by sea.” We know that fire,
smoke, drums, pistol shots, dots and dashes, red and green lights,
and the like, convey messages. We realize that a glance can speak;
a shrug may mean much. We note, too, that non-verbal signals
usually derive their meanings from verbal agreements. Paul Re-
vere knew what fwo lights meant because he and his friend had
made a verbal agreement. Red and green lights originally were
“stop” and “‘go’’ lights: the words were clearly visible against the
colors. Words underlie all thinking and exchange of thought.
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Words represent agreements among people. They avail much—if
they do not baffle.

Spoken words are symbols. They represent people, objects, acts,
and many things, much the same as a snore in a sound film signi-
fies sleep. Just as the snore, moreover, is not sleep itself but merely
a symbol for sleep, so also words are not reality itself but merely
svmbols for reality. Arbitrary sounds call life-facts to mind.

Written words represent spoken words. Hence the words one
sees on a printed page are symbols for symbols. The process of
using symbols for svmbols may be extended. The words ‘“John’s
height " may represent sounds which designate a physical actual-
ity. But one may use i to denote John's height. To designate
John's, Bill's, Susan’s, and Mary's heights one may write: h,, hs,
hs, h. rexpectively. These symbols of symbols of symbols enhance
brevity, clarity, and efficiency. One may substitute yet another
symbol for the symbols Ay + hy + hy + hq so that further con-
ciseness results:

Thus a single symbol may stand for the results of an operation
performed on many quantities. The symbols of mathematics are
greatly condensed, generally unambiguous, and easily manipu-
latable. Economy in time and effort results.

Teachers need to recall that mathematical words often represent
mental constructs rather than tangibles. One does not experience
pure number or geometric magnitudes through one’s senses.
“Five" represents a property common to 7: and /////. Two
“planes™ meet in a “line”; two “lines” meet in a “point.’”’ Yet
points, lines, and planes are ideas. “Point,”’ “root,” ‘‘circle,” in
mathematical usage, represent abstractions. We note that in one
sense lines, though one-dimensional, consist of zero-dimensional
points. Again, one-dimensional lines are intersections of two-
dimensional planes. No serious student o. words takes words to be
bits of reality, and mathematical words often do not refer at all
to reality. They symbolize fictions—mental constructs.

These observations do not gainsay the values of teaching and
learning aids. Rather they emphasize those values. The more ab-
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stract an idea is, in fact, the more children need to work with
concrete devices. Intellectual activity necessarily deals with ab-
stractions. Perceiving an idea in many real-life situations helps
the pupil make abstractions himself. When Billy Primary sees
four apples, four children; handles four crayons, four sticks; draws
four rings, four tallies; counts four papers, four pencils; and hears
four notes, four blasts; he can note for himself that four is not
people, objects, or marks; it is a group just so big.

Let us now look at other mathematical words.

Suppose, for example, that John Curious, a junior high-school
pupil, encounters the word “root.” This word represents a sound
which in turn represents a thing. In accordance with his experi-
ence to date, the thing “root” suggests to John is that part of a
tree which grows underground and fixes, supports, and nourishes
the tree. For him the phrase “root of an equation’” may seem far-
fetched. If, to date, his life in school has encouraged his natural
curiosity and not, asis often the case, stifled it through meniorizing
and verbalizing, John may seek to get at the root of this word
“root.” Did he not hear in Sunday school that “the love of money
is the root of all evil”?> Why did the teacher of Latin recently
refer to the Latin root of the English word “‘percentage’? Clearly,
a tree successfully transplanted, roots itself firmly in the earth.
Is this related at all to the mild upheaval of earth occurring when
a hog is said to root? Don'’t cheer-leaders exhort all pupils to root
for the team? What has all this to do with the root of an equation?
““Come to think about it,” muses John, “we found square roots of
numbers last year. Is the root of an equation a square root?”

The teacher who really helps pupils with language in mathe-
matics will go beyond the minimal requirements of the situation
in which the words “root of an equation” are to be taught. Merely
to tell John that a root of an equation is a known quantity which
satisfies the equation when substituted for the unknown quantity
in the equation will not suffice. Such a statement is concise, cor-
rect, and clear—to an adult versed in mathematics. But to John,
whose experiences with mathematical language are slowly spiraling
and spelling meanings for him, an adult's pat phrases and neat.
formulations may he practically meaningless. However, if his in-
structor requires textbook talk and/or teacher talk, John can
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memorize it. Better still, he can receive credit for his memorizing
unmeaningful language; he can, in fact, if he memorizes well, even
win school honors and rewards from his parents.

How, then, should the teacher help pupils to understand the
word “root’'? In the first place pupils should have much experi-
ence with many equations and should have discovered for them-
selvex that in some cases a single value satisfies the equation and
in other cases two or more solutions can be found. In discussing
and summarizing their work, pupils will probably need a word
which they can use to distinguish the answer(s) to an equation
from other kinds of answers they obtain in mathematics. Then,
and no earlier. should the name be given. The idea that one or
more values satisfies an equation is important. After it has been
discovered, the naming of such values is an easy matter. Pupils
who get the idew and then name 1t tend less to become confused than
pupils who attempt to learn terms representing ideas which are as
strange as the terms themselves.

Another way in which the teacher can help pupils to understand
the word “‘root™ is to discuss some of the word’s many meanings.
He can encourage his pupils to pool their knowledge of the word.
He can direct their attention to possible relationships among the
various meanings. Is there some similarity of meaning among the
phrases, the supporting part of a tree, the basic part of a word,

he root of a4 matter, the root of all kinds of evil, the root of a
hn, the root of a tooth, the fourth root of 256, and the root of
J3 4+ 27 = 542 Are these in turn related at all to the ideas of
becoming fixed. or implanting, or causing roots to grow? Where
too does the idea of eradicating come in? To help pupils use lan-
guage intelligently teachers must take the time to contrast mathe-
matical meanings with non-mathematical meanings of words.
Fortunately mathematical words usually are very simple in form.

In ordinary speech and writing, usage indicates what words
mean. In mathematics careful defining sharpens word meanings.
For example. "‘run"” may mean to scamper, to flow, to smuggle;
or “‘run” may be a stream, a score in baseball, or a disaster in
hosiery. But mathematically “run” is the horizontal component
of the length of a rafter, or it is a distance covered in a period
of time.
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Instances of words which represent technical as well as ordinary
meanings abound. “Root’ has already received some comment in
this chapter. Accuracy, precision, ertor, base, carry, borrow, check,
difference, product, foot, common, concrete, round, prime, order,
principal, rate, reciprocal, solid, representative, sieve, significant,
similar (the list could go on and on)—these are ordinary words
which take on precise meanings when used in mathematical
settings.

Multiplicity of meaning we naturally expect. No two people
have exactly similar backgrounds of experience. We learn words
in diverse settings, and hence no two people can associate entirely
identical values with a given word. To understand ope another at
all, we have to fix meanings of words arbitrarily. Usage, more or
less agreeable to all, settles meanings—at least for a time. And
the technical words of mathematics, even though they may re-
semble ordinary words in form, are more rigidly defined than
ordinary words.

Further light on the understood-by-agreement nature of words
come~ by studying shifts in the meanings of even technical words.
“We suggest only a few: “remainder’ in subtraction as compared
with “remainder” i division, square “root” versus “root” of an
equation, “hypothesis’ as a part of a geometric theorem as op-
posed to a hypothesis to be tested by experiment, ‘“‘statistics’ as
facts on the one hand and as a procedure on the other. Even
“sum” refers to a subtraction that Alice did for Humpty
Dumpty (21).

A billion. moreover, means a thousand million to an Armerican.
To a Briton, though, a billion means a million million. A perfect
language probably would embody the principle of one word for
one idea. To date no such language is in use, and mathematics is
no exception. Of course mathematics is relatively precise in its
use of words and symbols, but even the simple 19 X 8+ 4 x 2
can be ambiguous. In such matters the teacher cannot ajm merely
to be understood. He must express himself so clearly that he
cannot be misunderstood.

Another way to sensitize pupils to the arbitrary nature of words
seldom receives the attention it deserves. Moxst pupils respond
readily to occasional references to foreign words. One can request
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them to select, for example, the best word from the following list:
carré, tetragonas, Viereck, square, cuadrado, quadra. Except for
pupils who know one or more of the foreign words in the list, the
selection of course will be the word square. The point then to be
brought out is that to a German the best word would be Viereck,
to a Frenchman, carré, and so on for the other word in the list.
Indeed the word is not the object or the idea, but only its ac-
cepted symbol.

Teachers mindful of the arbitrary nature of words readily
recognize such pitfalls of language as the beliefs that:

1. Speakers and writers unerringly choose exactly the words
they need to express their ideas.

9. Listeners and readers receive meanings exactly as they were
transmitted.

3. Any given word has a unique meaning.

4. Children who state the correct answer necessarily under-
stand the concept(s) in question.

A person’s ability to understand words doubtless indicates prob-
able success in the complex life of our times. The efforts of makers
of intelligence tests to measure such ability bear witness to this
relationship. Yet, when by dint of much reading, hearing, and
saying. a pupil merely mimics and mouths others’ words—when
he resorts to verbalisms—he probably progresses but little toward
maturity in thinking. A pupil who recites glibly how to factor the
difference of two squares and then proceeds to evaluate 87 — 13
by squaring and subtracting reveals empty verbalizing rather
than understanding and applying a mathematical idea.

Words are tools, forged in the experience of the race, and sharp-
ened by agreerrents among pecple. Yet individuals use them; and
individuals may communicate clearly, or they may let themselves
be misunderstood. Let us recall the conversation between Humpty
Dumpty and Alice:

«  that shows that there are three hundred and sixty-fuur days
when you might get un-birthday presents.”

“Certainly,” said Alice.

“And only one for birthday presents, you know. There's glory for
you!”

“I don’t know what you mean by ‘glory,’ '’ Alice said.
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Humpty Dumpty smiled contemptuously. “Of course you don’t—
till I tell you. I meant ‘there’s a nice knock-down argument for you!'”

“But ‘glory’ doesn’t mean ‘a nice knock-down argument,’” Alice
objected.

“When I use a word.” Humpty Dumpty said, in rather a scornful
tone, “it means just what I choose it to mean-—neither more nor less.”

“The question is,” sajd Alice, “whether you can make words mean so
many different things.”

“The question is," said Humpty Dumpty, “which is to be master—
that's all” (21).

SEMANTIC

Old Man Memorizit is dead, as dead as a fossjl.

Teaching is more than telling and explaining, and learning is
more than imitating and memorizing. During the last 60 years
teachers of mathematics have gradually sensed that, above all
else, their pupils should learn the meaning of mathematical terms,
principles, operations, and patterns of thought.

Mary wasn't bothering to understand geometry. Ten years of
schooling led her to believe that memorizing must be the best
way to earn passing grades. Of course the definitions, assumptions,
theorems, and proofs of geometry were novel, but her study habits
weren’t. So she completed the test item, “A circle is — )by
writing “a clothed curve.’ Mary’s memory had tricked her.

Jack memorized a rule that ope may “‘cancel like factors in the
numerator and the denominator of a fraction.” So in a quiz in

trigonometry he wrote 5% - st _ . ack had carried’
cot r [{ 1% 4
mechanization too far.

Cross-multiply was a kind of magic to Frederick. The sight of
fractional coefficients was a sort of quick-trigger situation for hin.

Hence; = z + 5 set him to writing 4z = 3z + 5 and z = 3.

1

Did he check his result? No. ““A nice whole number like 5 must
be right.” Frederick had manipulated without understanding.

T~ b of — W

Sally was furious. She had reduced (-l—-;_——b--- by writing
a

and then by writing @ — b, and Miss Blanck herself had later
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read a — b asthe correct answer. Sally also had fallen for mean-
ingless manipulations,

Perry skipped all stuff about logic. So to him this reasoning
was valid:

If an official ts honest, he will reduce taxes. Mr. Mayor reduced taxes
during his first term. Therefore, Mr. Mayor is honest.

Also Perry felt that since every equilateral triangle is isosceles,
then every isosceles triangle is equilateral. Perry should have in-
vestigated converses.

It shocked these pupils to learn that they were notoriously out-
of-date. In colonial days pupils memorized their teachers’ words,
learned the rules by heart and wrote exercises neatly into their
copybooks. Nince the turn of the twentieth century, however, the
trend has been toward thoroughness, understanding, self-reliance,
and thinking. Pupils nowadays observe, count, measure, estimate,
solve, check. and reaxon. They solve sensible situations—live
problems, not busywork.

Indeed, busywork is passé—nearly dead. In 1945 the Com-
mission on Postwar Plans of the National Council of Teachers of
Mathematics summarized what teachers believe. The Commis-
sion wrote:

We must give more emphasis and much more careful atlention to the
development of meanrings . . . it is a mistake to accept glib verbalism as
evidence of sound learning.

Meanings do not just happen. Nor can they be imparted directly
from teacher to pupils, as by having them memorize the language pat-
terns in which meanings are couched. Instead, meanings grow out of
experience, as that experience is analyzed and progressively reorganized
in the thinking of the learner. In a word, each child creates his own
meanings; accordingly teacher activities are perforce restricted to those
of guidance. It is the function of the teacher to provide an abundance of
relevant experiences and to assist the child to isolate the critical ele-
ments and to build them into the desired understandings (9).

Nowadays teachers aim to develop thinkers. Teachers know
that, although words bear close watching, yet words are thinkers’
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tools. So teachers contrive situations in which pupils discover
mathematics. Pupils see for themselves that three and five are
eight, that there are four sevens and two left in thirty, that a cubic
inch is a kind of measuring stick, that fractions can be figured
out with diagrams, that Euler’s diagrams test many an argument,
that measuring an angle precisely is usually easier than measuring
a line precisely, that division by zero is impossible, and so on
through years of growth in mathematics. And teachers search day
by day for adequate words. They need words to describe problem
situations, words to question pupils’ unreasoned statements, words
to encourage further pupil research. Teachers hunt words to relight
the flame of curiozity which incited pupils before pat phrases and
answers-in-alabaster smothered it. Teachers plan daily to chal-
lenge, to ask why, to doubt, to interest, to evaluate, and to exploit
numerous ways to further pupils’ growth. Good language chal-
lenges: it does not bore; it does not frustrate. And teachers help
pupils to handle words:

Men use werds to solve most of their perplexities, if not all of them.
But it i3 not easy to use words properly in solving problems. . .. In
helpirg students to think reflectively, therefore, the teacher should help
them to understand the use of words. . . . (26).

Just about the time when leaders in mathematies education
began to question memorized mathematics, Michel Bréal began
to question lax language. In 1900 he wrote Essai de Semantique.
From it we got the word “semantics,” the study of words and
meanings.

Bréal noted that certain words (he used ““‘compressibility” and
“Immortality” as examples) contain all that the idea contains (5).
“Height,” for instance, expresses completely one and only one
idea. So also with “five’’; the word and the idea coincide.

Bréal noted also that other words symbolize objects, and these
words cannot suggest all the ideas which the objects suggest. In
mathematics, for example, “triangle” calls up a plane figure, a
spherical figure, or a pseudospherical figure. Each of these could
be scalene, isosceles, or equilateral. Moreover, a plane triangle
could be rectangular, a spherical triangle could be rectangular, bi-
rectangular, or trirectangular; a pseudospherical triangle could not
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be birectangular. The word “triangle’ varies in meaning according
to what we know about the figure; although actually it focuses at-
tention on the property of three angles. Similarly, “number’’ sug-
gests quantity, although we can invent kinds of numbers as we
will.

Bréal saw too that words sometimes perpetuate an incorrect
notion. We know now that electrons move in a vacuum tube from
a relatively negative cathode toward a relatively positive plate.
Originally, though, electricity was thought to flow from an abun-
dance (positive) toward a lack of charge (negative). Other ex-
amples crop up in mathematics. “Borrw” in subtraction does not
suggest what we really do. “Penny" is an English, not an Ameri-
can coin. ‘‘Remainder” in subtraction hardly suggests that we
need 10¢ if we have 25¢ and wish to spend 35 cents.

Bréal observed further that once a term gains acceptance, its
relevancy matters little. A mathematical example, “imaginary
number,"” illustrates this point. We hold nowadays that all num-
bers sprang from man's imagination; man invented numbers to
serve him. So-called imaginary numbers are indeed genuine, and
their applications are very real. But “imaginary numbers’’ persist
in our language.

A note of regret appeared in Bréal's Essai. Apparently he con-
sidered words to be bits of reality, segments of truth. Seemingly
he deplored discrepancies between the face values of words and
the objects the words represent. We know today that words, like
money, symbolize values acceptable to their users, rather than
marvel, as Bréal did, that words distort impressions. (An irrational
number is by no means a crazy number.) We set it down as a
principle that:

Words, as everyone now knows, “mcan’ nothing by themselves, al-
though the belief that they did . . . was once equally universal. It is only
when a thinker makes use of them that they stand for anything, ur, in
one sense, have “‘meaning.” They are instruments (23).

Granted that a speaker and a hearer are both trying to com-
municate and not befuddle, they symbolize, transmit, receive, and
interpret meanings. An exchange of meanings does result, but the
speaker s thought has small chance of carryving perfectly. A writer
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and a reader also understand each other imperfectly because
most words suggest several meanings.

Miss Bland, teacher of mathematics, knows that writing lacks
inflections, emphases, gestures—oral aids to understanding. She
knows, too, that speaking often lacks the precision needed for
understanding. So she talks and “chalks.” Yet Miss Bland knows
that telling and explaining fall short. Teaching is more than
telling.

Bill, a pupil in mathematics, knows that he must understand
an idea before he can symbolize it. Words and/or mathematical
shorthand can mar or make meanings. Sometimes Bill would
rather quit at the non-verbal stage. He knows, for instance, that
a’ means a-a and that a® means a-a-a. The expression a", how-
ever, he understands but would rather not verbalize. *‘I know it,”
he says, “but I can't say it.”

To help people use words effectively semanticists point to prin-
ciples somewhat like those in some paragraphs that follow. Like
other students, semanticists disagree on some matters. There are
schools of semantics; there are issues. But the principles we men-
tion find rather general agreement.

l. A Way of Life. Semantics, a young discipline, connotes at
present an attitude rather than a science. Illustrative cases
abound, but as yet scientific data and scientific laws aren’t numer-
ous in this field. The goal, of course, looms. Semantics bids to
become the science explaining how language affects other behavior,
especially thinking.

To date, ‘‘consciousness” summarizes the subject in one word.
People who realize that language has power, people who apply
semantic principles, people who think before they speak, people
who recognize that language both tells and excites—such people
are conscious semantically.

2. Context. We have noted, in the section on words and mean-
ings, that use and use alone determines what a specific word
means. How it is used and in what milieu of other words it appears
set its meaning. A car may be “fixed,” for example, the better to
win a race; but a horse may be “fixed”’ to lose a race; a boat may be
“fixed” to move but little—to ride at anchor; and a point may
be ““fixed” in space to move not at all. Surely the meaning of
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“fixed " is not uniquely fixed. In each of these cases, then, the idea
conveyed by the word ‘“fixed"’ comes from the context built up by
it and other words conjointly. The meaning of a word is known,
let us say, by the company the word keeps—by its context.

The pupil in arithmetic early encounters technical words which
vary according to context. From situations such as: “John had
15 cents, and he earned 10 cents more. How much money did he
then have?'" the pupil may associate ‘‘more” with additicn. When
the same pupil meets the circumstance: *“John has 15 cents, but
the movie he desires to see costs 25 cents. How much more does
he need?" then the pupil finds the word “more’ in another con-
text; the question, he notes, requires subtraction. ‘“Forevermore"’
is yet another “more."”

Nimilarly, “remainder” in one context is the answer to a sub-
traction, whereas “remainder” in division is a somewhat different
concept. Examples of mathematical words which shift in meanings
according to context include: hypothesis, proof, zero, postulate,
pencil, decimal, degree, order, average, induction, statistics, ma-
jority, pair, accuracy, range, curve, power, tangent, and square.

With respect to context the point for teachers to keep in mind
is that pupils should learn that nuances (precise shades of mean-
ing) and multiple definitions matter much—that the meaning of a
word depends on how it is used.

3. Science. Teachers of mathematics are seldom in a position to
guide pupils through the experiments of natural scicuce, or to
adduce evidence to substantiate the details of scientific subject
matter, or to teach formally the organized materials of science. A
sound baxis for teaching mathematical application, however, in-
cludes awareness of the scientist’s point of view:

a. Neientists report events, They seek to discover what happens
in the world, and they abstract principles which explain events.
The behavior of scientists at work is as important ax the wody of
knowledge which accrues from their observations. Above all else
scientists perceive a number of instances of principles before they
enunciate those principles. It is a kind of behavioral understanding
preceding their verbalization of results. Teachers who encourage
pupils to discover mathematical principles by counting, measur-
ing, and experimenting are using a powerful procecdure. Pupils,
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like scientists, thereby report uvents after they have behavioral
understanding of them. They know what they did to get specific
results. They generalize on the basis of first-hand experience.

b. Mutter is a process—a whirling of electrons. Hence, objects
are reallv events, and change is everywhere the rule rather than
the exception. People, objects, and relationships actually change
from instant to instant. Naturally problems arise. With the flow
of events new ideas, new relations, new understandings, and new
solutions ensue. The teacher of mathematics helps pupils to see
changes, to cope with new problems, and to abstract principles
which apply to events, which, though they resemble one another,
never exactly duplicate one another. Thinking, of course, helps
people adjust to change. New occasions teach new duties. People
gain nev insights, and people solve new problems.

¢. A concept is a set of operations. A person best understands
length by measuring lengths; a pupil who has counted the square
inches within the confines of a closed figure understands the con-
cept of area; and one who has carried a 30-pound pack appreciates
the concept of weight. For pupils learnir.g mathematics those
questions unanswerable hy actual operations tend to be meaning-
less. Again, as in items a and b in this section, understanding
appears as behavior. What the pupil does reflects what the pupil
understands.

d. Besides discovery and explanation, prediction and verifi-
cation interest the scientist. In situations requiring problem-solv-
ing, pupils can be encc.. aged to study tlie problem, hazard a
guess as to its answer- :>dict the outcoine—and then gether and
analyze data to verify - to refute the prediciion. Such a procedure
ties the so-called scientific method in with mathematical situ-
ations,

4. Abstracting. Teachers reflect the attitude of scientists when
they keep certain principles in mind as they work with their
pupils. One who recognizes the process character of reality, who
notes that change is the essence of existence, and who appreciates
the complexity of even simple events will tend toward scientists’
modesty and scientist<' tolerance rather than toward conceit and
dogmatisin.

Every event has an infinity of characteristics. To describe an



LANGUAGE IN MATHEMATICS 173

event people necessarily select, usually unwittingly, what they feel
is important in the event. They simply cannot include all its
properties. They report the salient features. They necessarily ab-
stract relatively few items and base their statements on them.
It is not possible to recount exactly ‘‘the truth, the whole truth,
and nothing but the truth.”

Teachers of mathematics need to be conscious of abstracting.
It, as the keystone, supports the arch of semantic principles.
Teachers need to realize, and help their pupils to realize, that
whereas reality changes and gets complicated, statements about
reality oversimplify and persist. Herein lies the value of inductive
procedures. Teachers encourage their pupils to find a real problem
that the pupils solve by counting, measuring, recording data, and
generalizing results. Class discussions enable each puypil, each a
budding scientist perhaps, to put into words the items he ab-
stracted from the problem. Pupils exchange observations they
made in the situation. They eventually agree, under the teacher’s
guidance, upon properties common to a variety of problems. They
abstract properties, relations, and probably conclusions. They ex-
perience, abstract, verbalize. Observation, generalization, and
communication derive from abstractions.

Pure mathematics, of course, establishes general relations
among abstractions. Pupils measure the sizes of angles in several
triangles not merely to know about particular angles in specified
triangles. Their teacher guides them to discover, i.e., to under-
stand behaviorally properties and relations among angles in all
plane Euclidean triangles. The word ‘“plane’” is an abstraction,
being a mental rather than a physical construct, and it limits the
field of investigation. The word ‘“Euclidean’ liinits the discussion
still more because it denotes and connotes a particular set of
postulates abstracted from a multitude of possible geometric as-
sumptions.

Teachers who help their pupils to understand abstracting are
helping them not only to discover mathematical principles but
also to communicate those principles to their classmates. Pupils
work with projects specifically designed to emphasize mathemati-
cal concepts, they discover the concepts in the situations, they
understand them from their experiences with them, and they state
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in words the ideas they have gleaned. The child who abstracts
“three” as a property common to certain collections of objects
and who has learned “five” by handling things, can discover for
himself what three and five together are, and he will find words
for telling others about } discovery. Similarly, the pupil who
constructs right triangles, measures sides and angles, and com-
putes ratios between lengths of sides will discover properties of
similar triangles arn . : >perties of trigonometric ratios. Having,
moreover, behavioral understanding, he can proceed to verbalize
and submit his report to his classmates for discussion, rewording,
and acceptance. Abstracting from actual experiences thus pro-
vides & foundation for deductive procedures, the goal of mathe-
matical endeavor.

5. Referents. Most people, if confronted with the question: Is a
word the thing it represents? would probably reply hastily that it
certainly is not. Yet many of these same people behave as if
words were things, as if names were realities, as if symbols were
referents. To be called a subversive is not to be a subversive, al-
though the appellation excites people as much as a spotlight dis-
turbs a burglar plying his trade.

Teachers of mathematics deal with a subject in which the
terminology is relatively emotionally sterile. Yet those teachers
realize that the people they deal with matter more than the sub-
ject they teach, and that, for their pupils, mathematical words
may have emotional overtones. For some voungsters “fraction”
frightens, for others ‘‘division" distresses. for some “variable"
vexes, and for many “algebra’" is Arabic.

We need not multiply illustrations: teachers can easily cite
many more instances of words which wreak wonderment and
worry. Teachers also note from the behavior of their pupils that
mathematical words can become blocks to learning. Who has not
sensed a tenseness among pupils when a word such as ‘‘ratio,”
or ‘coefficient,”” or “inversion" is heard?

To analyze such verbal hurdles in the path of the learner helps
more than to list them. Why do some pupils shudder when they
encounter a word like “variation™? One main reason is that some-
times pupils learn words as abstractions devoid of concrete refer-
ents. To them the word is the thing. Yet, on the other hand, the
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pupil who measures, records, and compares heights and weights of
his classmates, can note and understand variation. The pupil who
cc'ints the square inches of surface within rectangles of different
sizes and shapes can understand how area varies jointly with
length and width. The pupil, however, who merely hears about
variation, direct variation, inverse variation, joint variation, and
variation as the square or as the cube of an independent variable,
can fail to catch the idea of “‘variation.” If the pace necessary to
cover a course of study has to be at all accelerated as far as the
learner is concerned, the idea of “variation’’ may be quite unclear.
If the pupil tries to memorize verbal distinctions among direct, in-
verse, and joint variation without getting the feel experimentally
—without behavioral understanding—he may eventually get lost
and become frustrated. Eventually the word “variation” may incite
tenseness and block learning.

Another reason why technical words may be bugbears to some
pupils is the very precision of those words. A person, as long as he
avoids unsocial acts, may have vague notions about words such
as “truth,” “brotherhood,” “honesty,” “virtue,” “wisdom,” and so
on, without particular harm to himself or others. One usually
does, in fact, have one’s own ideas about such words. For a math-
ematical word, however, fuzzy notions are inadequate. It seldom
suffices to know that ‘“‘mean,” “median,” and “average’’ connote
central tendency. Judgments as to which is the better, the mean or
the median, depend on one's knowing exactly how each is defined.
As another example, the pupil considering space may refer to the
middle of the land, and be unspecific. When he refers to the
center of a circle, however, he is specific. To' deal loosely with
these words, to use them interchangeably, say, is to encounter
semantic difficulties.

The fact that users of mathematical words may shift meanings
in different contexts has already been mentioned. Such shifts, of
course, occur less frequently for mathematical words than for
ordinary language, but they can trouble pupils who confuse words
with referents. If he takes the word to be actually the thing, the
pupil who has worked long in a workshop to make a transit for
field work finds only nonsense in the sentence, “The ferry makes
10 transits a day.'’ If he thinks symbols are objects, he may wince
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a\ the appearance of the word *radical’’ because political, chemi-
cal. mathematical, and literal connotations of the word are a
confusion to him.

In studying mathematics pupils have a unique opportunity to
note that there is no necessary relation between a word and its
referent. Words are more or less useful conventions; “‘a rose by
any other name would smell as sweet”’; an unretouched skunk by
any other name would smell. Meanings are arbitrary; users make
words mean what they want them to mean. Teachers in mathe-
matics may well emphasize this point. Perhaps words cannot he
made emotionally sterile. They can, nevertheless, be regarded in
their true light—as servants, not as masters.

6. Reactions. Human nervous systems cooperate through sym-
bols—mostly speech and writing. What one learns one conve vs to
another, who reworks it and uses it. When people act in accord-
ance with information, when they base decisions on evidence, when
they prove propositions, when they evaluate others’ thinking,
they depend on symbols. They think matters through, tl, 2y weigh
meanings, they react to symbols.

Such reactions require at least a slight pause for reflection.
When Cookie took her homework to Dad for help, they learned
to divide 11 apples among 4 people by working it out with apples.
They considered the apples representing the symhols describing
the nroblen), and got 2 whole apples for each person. Then they
reacted further to the symbols and cut the remaining apples into
fourths.

Symbol actions necessarily are delayed; we react, not to the
symbol itself, but to its referent. Naturally we perceive the symbol
before we recall its meaning. We need time to find and test that
meaning. Cookie and her dad found meaning in the problem about
apples as they handled some apples. They did not fret because
Cookie couldn’t give an automatic answer. They didn't time their
work. Rather thev took time to understand, they got at the mean-
ing, they solved the problem, and they had no regrets.

But there are other reactions. The day following the experience
with apples, Cookie's dad phoned home and said he was bringing
a surprise. When he entered the house, two children and six dogs
immediately charged him. What was it} What's the surprise?
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Disaster ensued. The cream puffs Dad carried yielded to the
pressure, and spattered at large.

Automatic, little pondered, or habitual acts are signal reactions.
Such reactions require no time f thinking; they are practically
undelayed. Korzybski emphasized the relation between reactions
and thinking: “The syvmbolic levels are uniquely human and
differentiate most sharply human reactions from signal reactions
of lower, less complex formsof life”” (19).

When Cookie, her brother,) and their dogs leapt upon cream-
puff-laden Dad, their reaction was somewhat animalistic. For,
although lower forms of life react to signals, the converse (signal
reactions remain subhuman) does not follow. Many human acts
proceed from almost instant recognition of meanings. When Junior
learns to drive the family car, he practices many of the operations
until they become almost automatic. In mathematics too, Junior
solves enough equations (after he has discovered the principles)
to routinize the work. He responds to a stop light and he responds
to .20(5 — n) + .40(n) = .25(5) quickly. In either case he saves
time and energy for matters that require reflection.

Helping pupils to blend signal reactions and symbol reactions
wisely requires teachers’ best efforts. Convinced that knowing
instantly what eight sevens are pays, pupils may seek to mechan-
ize problem-solving. If they desire & number to express success in
making baskets in basketball, they may subvert thinking and
clutch at cues. In the phrasing “Twenty-seven baskets is what
per cent of 56 tries?”’ they may divide 27 by 56 ‘“‘because 56 goes
with of.” If the same problem comes to them in the words “Lotto
set a league record of 27 baskets in 56 tries last night, what per
cent of success was that?”’ they may divide 56 by 27 ‘“‘because 27
goes with of.”

In geometry pupils may strive to acquire a set of signal reac-
tions. And the going is arduous. To memorize one proof after
another reaps small satisfaction. Confronted by a proposition
they have studied from a book or from their teacher’s words,
pupils may tryv to repeat the proof from memory. If they succeed
thoy may get good marks; if they slip they fail miserably. If, on
the contrary, pupils approach a theorem as a problem, they will
react to symbols. What do the assumptions mean? What words
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have we defined? What follows from the facts at hand? The pupils
try to discover their own proofs; they look for meanings, link
them together, and test results. They react to symbols.

How we react matters. Signal reactions facilitate operations,
once we know why they work. Symbolic reactions facilitate think-
ing. prob’ m-solving. proving, and evaluating the propositions
people offer us.

7. Maps. Diagrams, charts, graphs, scale drawings, and maps
depict relationships. They symbolize some abstractions we have
made from real situations. Hence they represent territories some-
what as words represent ideas, as languages represent cultures,
and as numbers represent quantities. Korzybski likened the rela-
tions between symbol and referent to the relations between map
and territory in this manner:

A. A map may have a structure similar or dissimilar to the structure
of the territory.

B. Two similar structures have similar logical characteristics. Thus,
if in a correct map, Dresden is given as between Paris and Warsaw, a
similar relation is found in the actual territory.

C. A map s not the territory.

D. An ideal map would contain the map of the map, the map
of the map of the map, endlessly.... We may call it self-reflexive-
ness.

Languages share with the map the above four characteristics.

A. Languages have structure. . .

B. If we use languages of a structure nun-similar to the world and
our nervous system, our verbal predictions are not verified empirically,
we cannot be rational or adjusted. .

. Words are not the things they represent.

D. Language also has self-refloxive characteristics, We use language
to speak about language. .. (18).

Numerous interpretations and illustrations of the foregoing
principles appear in Korzybski (18), Rapoport (27), Johnson (16),
Hayakawa (13), and Keves (17).

We shall mention only three examples, however, to illustrate
that, since words, maps. charts, drawings, and diagrams represent
reality incompletelv and imperfectly, people sometimes err in
trusting them implicitly. No map shows all details; map makers
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rely on measurements, all of which only approximate actual
lengths; territorie, change, and maps become obsolete. Besides
overlooking imperfections in maps, users often confuse their own
inferences with descriptions the map maker wrote.

Jerry, our first example, entered college believing that a mathe-
matician is one who can glance at Union Station and tell you how
many bricks it contains. Jerry’s map for exploring mathematics
came partly from his own experiences and partly from others’
words. Years before, when he entered Grade VII, people used the
name “mathematics” instead of “‘arithmetic.” Throughout junior
high-school mathematics and in two courses in senior high school
the pupils only computed. Jerry’s map showed him that mathe-
matics means lightning calculating. In fact, his father, who figures
lumber quickly at the Builders’ Supply Company, considers him-
self to be ““quite a mathematician.”

Miss Steofan, teacher of mathematics, uses her special kind of
map. To her the beautiful conclusions in mathematics, the practi-
cal usefulness of mathematics, and the correctness of it all brought
her to the belief that in mathematics people meet Truth itself.
Her pupils, accordingly, confront a kind of heaven-hell dichotomy.
All who learn and abide by mathematical laws, as Miss Steofan
interprets the laws, reap right answers and high marks. All who
doubt and deviate from the divine pattern simply fail. There is
disciplinary value, Miss Steofan believes, in pupils’ doing as they
are told. Doubters could later become subversives.

Miss Cherie, a teacher of a fourth grade, encourages the children
to bring clippings to school daily. The children seek news stories
containing numbers. If stories with pictures and numbers appear,
so much the better. Each child then tells the others about his
clipping, writes and reads the numbers he found, and reports new
words to the class. If no one in the class can help with either new
words or large numbers, the pupils start research. They name the
places in the numbers, the teacher helping only after all reach a
digit they cannot name. They look words up in children’s diction-
aries. Later they read one another's cuppings, make up problems
about them, scolve and check the problems, and then post the
clippings for  -iparison with future reports. Miss Cherie’s map
of beliefs leads her to link reading, arithmetic, current events,
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and telling time together. Her chart also leads the class to daily
periods for studying language and arithmetic systematically be-
cause these subjects are systems.

People construct word maps from direct experience and from
verbal reports they hear and read. We have merely touched the
topic through three illustrations. The map we ourselves are de-
veloping in this chapter indicates that Jerry and Miss Steofan
might well examine their mathematical maps. All arithmetic is
mathematics, but all mathematics is not arithmetic. Mathemati-
cal conclusions follow inevitably from mathematical assumptions,
but man made those assumptions- -they a1> not truth itself.

From time to time man has doubted, experimented, and in-
vented. Mathematics grew that way. Miss Cherie’s teaching map
lets her deviate from lessons in a book. Her pupils look things up,
discuss them, and include them in problems they compose, solve,
and check. Miss Cherie is willing to doubt, experiment, and invent.
She helps pupils to evaluate and build up their own word maps in
ordinary and mathematical language.

8. Understanding. A child might easily learn by heart the fol-
lowing stanza from the Pirates of Penzance. He might commit it
and then sing it. Or he might sing it over and over and thereby
learn it. Either way, though, he might not understand what he
says or what he sings.

Though counting in the usual way,
Years twenty-one I've been alive,
Yet reckoning by my natal day,

[ am a little boy of five!

When pupils learn without seeing the point in the material,
they merely memorize meaningless words. They use svmbols
adroitly without understanding them. They deal in verbalisms.
They manipulate symbols, but think little. Korzybski had this
principle in mind when he wrote: “Only the technical interplay of
symbols, to find out some new possible combination, can be con-
sidered as low-grade thinking" (18: 69).

Verbalistic learning plagues pupils in mathematics as in other
subjects. Pupils sometimes use pumerals without understanding
numbers. Frequently pupils working verbal problems seek cue
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words that disclose, so they believe, which operation to use. This
they do without trying to understand the problem. The words
cancel,”’ “'transpose.’ “collect,” “invert,”’ “‘cross-multiply,” and
“simiplify'" also often become rather empty verbalizings to pupils.
Teachers of mathematies can readily add examples to the ones
that appear here.

The moral, of course, ix that teachers should emphasize that
facility with syvmbols often differs from underxtanding symbols.
And understanding ties symbols to life. The Harvard Committee
suggested :

Abstractions in themselves are meaningless unless connected with
experience. . . . The teacher can do a great deal . .. ; he can relate theo-
retical content to the students’ life . . ., and he can deliberately simulate
in the classroom situations from life . . . he can be persistent in directing
the attention of the student from the symbols to the things they sym-
bolize {121.

1

Betz took a similar position: '*The evidence is overwhelmine ‘hat
when mathematics is taught as a cumudative system of ideas, with
due regard for understanding and mastery, and for lifc-centered ap-
plications, it ceases to be a meaningless game" (2).

Some wavs that teachers can use to help pupils to substitute
understandings for verbalisms follow:

Larry learned to say “nine’’ whenever he saw 5 + 4. Following
the summer vacation Larry's new teacher took stock of his knowl-
edge of combinations. At that time he said “eight.” then “eleven.”
for 5 + 4. Besides, he didn't know how to find the correct sum.

Suggestion: Encourage Larry to count five classmates, then four
classmatex, and then five and four classmates. Repeat with chairs,
with books, with pictures, with marks. Help Larry to experience
fire and four enough to unu: rstand five-ness, four-ness, and nine-
ness. Have him explain orally to his classmates what the symbols
5, 4. +, and 9 mean. Have him explain orally how to find other
simple sums. Have him tell often what to do when he forgets a
combination. Have him prove to others that the results he offers
are correcet.

(laire chose 1,4 1n the following question: Which is the largest
fraction: Vo, Vg, by by tyal ty?
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Suggestion: Have Claire cut 1-inch strips of paper each 12 inches
long. Have her cut one strip into halves, another into fourths,
another into eights, a strip into thirds, one into sixths, and one
into twelfths. Encourage her to tell how a fraction gets its name.
Help her to discover that a large denominator suggests many
parts, and that each part has to be small. Claire can also see from
the pieces that the number o* parts is the “namer,” or denom-
inator.

Joe wanted to find out what part of his state's population
(about 2,500,000) lived in his home city (about 15,000). He wrote:

DO _ 1588 _ 15 ol \When questioned. Joe could
2500000 ~ 2506008 — O 10 = °F questioned, Joe cou
not decide whether his answer fitted the problem; he maintained
that ““zeros above” and “zeros below" could be “canceled’’; he
stated glibly that ‘“‘the outside 5 in the last step ‘guzinta’ 15
three times and 25 five times.”

Suggestion: With one-inch strips 12 inches long cut into halves,
quarters, eights, thirds, sixths, twelfths, fifths, and tenths, en-
courage Joe to show that: 2{ = 15; $5 = 15,87, = 1,; 8¢ = 14,
2 = lj; 8{s = 1¢; etc., until he can state the general principle
that dividing both terms of a fraction by the same number (not
zero) changes the form but not the value of the fraction. Ask Joe

to reverse the process——show that 1¢ = 2{,; 15 = 34; b2 = 80—
and discover the principle of multiplying both terms of the frac-
10 100 150

tion by the same number. Have him try his rules o

150 15000
2500 2,500,000

Allen attempted a puzzle which read as follows: “The value
of a certain fraction is 3{. If one is subtracted from the numerator
and if one is added to the denominator, the value of the resulting
fraction is 23. Find the original fraction. Allen concluded that
“the puzzle is inconsistent ; 1 from 3 leaves 2, and 1 plus 4 makes 5;
so the resulting fraction should be 2¢.”

Suggestion: Allen was the most capable boy in his class. Yet
one phrase in the puzzle meant nothing to him in that context.,
Word-by-word reading. and the question, “Would a shorter word-

% 20" 300" 250
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ing state the same thing?'’ eventually helped Allen. Equations did
not elude him, but simple language dia.

[.uco cut 3 wires for bracing a television aerial. The aerial was
to be mounted on a flat portion of a roof, and the wires were each
to be faxtened on the roof 3 feet from the base of the aerial and
on the aerial 10 feet from its base. Luco recalled the Theorem of
Pythagorax as “the sum of the legs squared equals the square of
the hypotenuse,” so he computed .“e hypotenuse, added 1 foot
each for fastening the wire, and cut the wires. They were too long,
of course, and Luco wasted some wire.

Suggestion: Luco didn't vizualize the Theorem of Pythagoras,
or he would have seen the flaw in his ready rule. Models and
diagrams, plus a proof of his own, would have put meaning into
the symbols Luco tried to memorize without understanding them.
He would have thought from symbols to squares and back to
meaningful symbols.

Facility in using symbols, we conclude, does not guarantee
thoroughness in understanding those symbols. Machines can solve
differential equations. Only human beings, though, understand
and set up differential equations to solve life probiems.

Teachers can direct pupils’ attention from symbols to referents
and back again. Abstractions misunders‘ood do not help us; in-
stead they hinder.

Teachers also can help pupils to recognize how people use lan-
guage to persuade or how people sometimes scek to make the
worse appear the better reason. The ancient Gorgias held that
“Nothing is; or if anything is, it cannot be known; or if anything
is and can be known, it cannot be communicated.” Pupils today
need not embrace Gorgias's creed. They shouald, however, be
aware of semantic principles.

VERBALIZATIONS

A person’s vocabulery suggests his intelligence and reflects his
intellectual successes. Makers of scales for measuring mental age
usually depend heavily on verbal items. The reason is that people
learn words; we know that words do not erupt like teeth in
children’s mouths.

Bruce is just learning to talk. He can say clearly “*Dad,” “Ma-
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ma,” “Paw-paw" (for Grandpa), and ‘“bike.” Parents, relatives,
and friends repeat words, and Bruce tries to imitate t! em in his
own inimitable way. He is gradually learning to associa‘e definite
sounds with specific people and things. He points, hears, then
points again, and says the sound he just heard. He is a great
repeater.

Although no one to date has told Bruce so, he not only builds
his vocabulary, but he also practices what logicians call *‘exten-
sional defining.”” To date, of course, experiences with his parents
have made up his social life almost entirely. When he points and
says ‘“Dad,” the word means, to him, many experiences he has
had with Dad. When he shies from strangers (i.e., people that
suggest no experience—meanings), clings to his mother, and cries
“Ma-ma,” he again associates experiences with a word.

Indeed, when Bruce points to his dad, he offers not at all to
share verbally with others the abstractions he has made about
“Dad.” He points, and lets others make their own abstractions.
The same goes for “Mama,” when Bruce shuns strangers and
reaches toward his mother. Other people simply have to make
their own abstractions.

As Bruce grows older his fund of meanings for the few words
he now knows will increase. His stock of words will also increase,
and the more experiences Le has, the more words he will learn
and the more meanings he will tie to each word he makes his own.
The sounds of the words, of course, he will learn by imitation.
But the meanings he will forge for himself in that lively fire of
his many experiencer.

Still later, Bruce will learn to see words in manuscript, in print,
and in cursive. Eventually he will learn to sound out words for
himself from the printed or written form. He will learn to pro-
nounce words by associating standard diacritical marks in a dic-
tionary with specific sounds. For meanings of words, though, he
will forever depend heavily on experiences.

Bruce. in time, will learn, at home, at Sunday school, at school,
at work. and at play, to tell about words by using other words.
As with extensional definitions, which he uses unwittingly of
course, Bruece will also eventually learn to use what logicians call
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“intensional definitions”’; he will define words entirely by using
other words. He will become an intellectual.

We hope for Bruce, though, that his parents, his leaders, and
his teachers will contrive literally millions of excursions, adven-
tures, and experiences for him. We hope that he will retain—even
increase—that lively curiosity he now possesses. We hope that no
efficiency-bent teacher(s) will delude him with words—entice him
to seek worn words, pat phrases, catchy slogans, and smooth
sentences that he can substitute for first-hand learning by doing,
experiencing, and thinking. We hope that he will crave to discover
things and tell and write about them in his own words. We hope
that no teacher will assign words for him to tell back or write
back. We do not want him to become a “mental parrot.” And
Bruce represents any one of millions of children who now are cu-
rious and eager to learn.

Learning words without first-hand experiences to bring out
meanings hinders thiuking. In verbalisms Korzybski saw beyond
educational damage to possible neurological damage also:

... first order empirical facts are more important than definitions or
verbiage. It should be noticed that the average child is born extensional,
and then his evaluations are distorted as the result of intensional training
by parents, teachers etc.,, who are unaware of the heavy neurological
consequences (18: xv).

Verbalisms have abounded in mathematics—*Invert the divisor
and multiply”’; “Crossmultiply”’; “Cancel”; “Transpose’’; “Re-
duce’’; “Bring down”; “Drop the per cent sign and move the
decimal point two places to the left'’; “Annex the per cent sign
and move the decimal point two places to the right”; “Factor
completely’’; “Double the width, double the length, and add’;
“Divide the number following 7s by the number following of"’;
“Add the number of decimal places in the multiplicand to the
number of decimal places in the multipl:~r’’; “Subtract the number
of decimal places in the divisor from the number of decimal places
in the dividend, adding zeros to the dividend if necessary’’—such
statements often lack meaning for the pupils who have learned tu
recite them. Teacners of mathematics can readily adduce more
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examples of verbalisms. They realise, too, that although a pupil's
words may conceal his lack of understanding, yet his words may
not substitute for understanding. Sooner or later the parrot quits
mathematics.

To help pupils to increase their mathematical understandings
teachers plan experiences for the pupils. In arithmetic, for ex-
ample, a program of extended, unhurried concept-building helps
pupils discover relationships nmong numbers before the pupils
learn technical words to express those relationships. John and
Mary learn to recognize groups, to count, to measure, and to
solve simple problems largely through discoveries they make with
groups of people, toys, sticks, pictures, drawings, and marks.

Giradually, moreover, pupils realize that the idea of combining
one group with another group needs a name. The word “‘adding,"
being needed, sticks. When pupils Inter encounter situations that
adding will resolve, the pupils have the iden and reverbalizing
the iden readily follows. Experiences also uncover the ideas per-
taining to other operations, and the pupils' understandings and
vocabularies grow simultaneously.

Similarly in algebra pupils think through many cases of com-
bining guins (positive integers) with other gains. Also pupils think
through many cases of combining losses (negative integers) with
other losses. Then they handle many cases combining gains with
losses, From these experiences pupils get the idea of algebraic
addition. Once they get the idea pupils understand why technical
language and rules of operation fill a need. When ideas precede
verbanzations, then empty verbalisms do not appear. The pupils,
in fact, understand the relationships und the rules because they
composed them themselves,

Similarly in geometry puapils experiment with many circles and
many parallel lines before they define them. Key words in defini-
tions should refer to thoroughly known concepts. Indeed defini-
tions should follow, not precede, experiences. When pupils report
their dixcoveries orally, when they express generalizations they
themselves have made, when they explain solutions to problems
they have solved, when they submit proofs, and when they inter-
pret quantitative results, they grow in voeabulary. Terms needed
for such reports persist, for understanding helps pupils’ memories.
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Pupils who really know, can communicate their knowledge. "1
know it, but T can't say it" has long fascinated teachers and other
students of learning. Pupils may exhibit behavioral evidence
that they are grasping a conceps, but they may show too that
they are groping for words. Suppose we consider the statement
(@ = D@ + 3) = 0. A pupil may sense that a can be no bigger
than 2, and he may =ay that he cannot tell why a is thus restricted.
But teachers usually help such pupils by contriving more experi-
ences of a <imilar xort. Words, crude worda at first perhaps, result.
But familiarity with an idea abets verbalization of it. If pupils
realize that new technical words would enhance their statements,
then they are psychologically ready to acquire those new technical
words, And words thus learned are easily remembered.

Professor Gertrude Hendrix two vears ago considerably olari-
tied the matter of subverbal awareness as prerequisite to meaning.
"T'he excellence of her treutment, in fuct, impels the presant writer
to cease here, and to urge all readers to seek out her article (14).

In this section on verbalizations ‘ve have contrasted verbali-
zations with verbalisms. We build the former on experiences, the
bedrock of understanding. The latter we construct on pure mem-
ory alone, the sinking sand of meaningless words. Experiences to
supplement reading, we contend, would have helped the student
who « few years ago wrote thix: ““Things can be proved by statis-
tics if correct data are [sic] acquired through experimental ob-
servation. But if observation is made in frustration it proves
nothing."”

TEACHING FOR MEANING: SUMMARY

"Throughout the chapter we have suggested and implied that
language profoundly affects behavior. In our case, of course,
learning mathematics concerns us us desirable behavior. The pupil
who understands mathematics uses mathematical expressions he
encounters. Throughout their mathematical studies pupils handle
symbols, recall what the symbols represent, and interpret hypo-
theses and deductions couched in symbols.

Pupils progress when ideas of size, degree, and relationship
shine clearly to them through mathematical language. When lan-
guage suggests ideas inaccurately or inadequately, however, pupils
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make slight headway, if indeed they make uny gain at all. We
have considered examples of weak language and examples of
helpful language.

Adequate mathematical language is clear, concise, correct, and
cogent. It complements ordinary language, and it suggests which
operations to use to solve perplexing situations. It includes un-
defined terms, definitions, postulates, and theorems. It shows steps
in a proof. It records and communicates solutions to problems,

Faulty language, however, can mislead pr.ople. A given line of
reasoning may be invalid, yet it may seem plausible. Teachers of
mathematics and teachers of other subjects render tremendous
service to their pupils when they help them to detect the verbal
booby-traps set up in modern messages sent via mass media of
communication.

Words symbolize, but they are not bits of reality itself. Mathe-
matical symbols facilitate thinking, provided pupils clearly under-
stand what the symbols refer to. Spiral learning develops from
many contacts-—concrete experiences at first, and then situations
progressively more and more abstract.

Printed pages record meanings through symbols; but the reader
gleans these meanings to the degrec that his background of experi-
ences with those symbols permits. Meanings fixed by definition
in mathematics help learners understand writers and teachers.
But individual experiences inevitably affect interpretations; if
symbols mean but little, pupils may memorize them ‘o get by, or
they may detest them and hate mathematics.

Originally “to teach’ meant *to show.” Later “to teach” came
to mean “to tell.” Teachers intent on efficiency practiced telling
as a way to save tine. Woeful deficiencies in mathematical learn-
ing, however, cropped out. To correct these weaknesses teachers
retold the facts and drilled pupils on the facts. But drill devoid
of understanding did not enhance learning. Pupils could operate—
they could add, subtract, multiply, divide, factor, and recite
proofs—but many failed to solve problems. Only the few who
forged meanings for themselves understood mathematics. Their
fellows disclaimed mathematical ability and despaired. Mathe-
matical illiterates greatly outnumbered those with mathematical
competence.
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Nowadays tenchers realize more and more that their task is to
contrive experiences for their pupils to think through. Modern
tcachers devise ways for pupils to discover meanings for them-
selves. Fueility with 'anguage, of course, helps pupils learn mathe-
matical meanings, and con versely.

One key idea which teachers keep in mind resides in the word
vawareness.” Teachers who use language effectively realize that
lunguage makes or mars communicution. They understand that
context determines the meaning of multivalued words. They ap-
preciate that, woereas words tend to be stable, the life-events
that words svmbolize tend to change. They measure a pupil's
grasp of u concept by what he doex with the concept. They are
aware that reports inevitably abstract and depict only salient
features from an infinity of characteristics. They reiterate the
principle that words are not events ~that words merely represent
events. They differentiate thinking (reacting to symbols) from
automatic acts (reacting to signals). They emphasize likencsses
between maps and words—they note that fuulty words, like faulty
maps, lead us astray, They seek, above ull else, understanding in
stead of many mere manipulations of meaningless marks.

Teachers scek to transfer this consciousness of semantic prin-
ciples to situations outside the cluss room. Citizens in a democeracy
need to be wary of words. They encounter at every hand words
designed for them to accept with a minimum of careful evaluation.
Instead of encouraging pupils to memorize empty symbols, teach-
ers in America should help pupils to think critically and weigh
their own and others’ words.
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6. Drill—Practice— Recurring
Experience

Brx A SUELTE

DEFINITION AND AGREEMENT

DriinNg the past quarter century the word “drill” has not only
changed semantically but a’<o, and more important, the signifi-
cance of drill has changed. T'wenty-five vears ago, drill was the
common method of learning applied to such school subjects as
arithmetic, writing, and spelling. Children were required to write
a word 30 times to learn to spell it and the present generation of
middle-aged people spent countless minutes in winding up ovals
in one direction and then unwinding them in the opposite direction
in order to train the muscles to follow the sweeping curve of pen-
manship. This was drill, it was carried to extremes and became so
sterile that during the 10-year period of approximately 1935 to
1945 drill, as a learning procedure, was frowned upon and ridi-
culed in many educational circles. However, during the same
petiod it remained the cominant pattern employed by many
teachers. More recently, 'drill, as a part of the learning process, is
again respected. But it is not drill for drill's sake that we respect,
rather it is 1ts contribution to meaningful learning that aims to
become tunctional for the individual. In order to be most fruitful,
drill must be employed with artistry, Thisis ne - a easy, mechani-
cal, or formulated artistry, but it is one that requires a high level
of discernment in knowing when, hew much, where, and how
to apply.

In this chapter, the words “drill,” “practice,” and ““recurring
experience™ ure used to indicate those aspects of learning and
teaching that possess elements of similarity or sameness which
repeat or vecur, These recurring experiences should have a com-
monality that is discernible by the learner. In this discussion the
words “drill,”” “'practice,” and “recurring experience”’ will be used
within the framework that some authors refer to simply as “drill."
The following examples will illustrate the inclusiveness of the
discussion,

192
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1. A four-year.old boy was stacking blocks of various sizes into
a column which repeatedly fell down after he had placed a few
blocks upon each other. He tried holding the blocks with one hand
but as soon as the hand was removed the column fell. He dis-
covered that straightness or perpendicularity was a factor and
tried to arrange them accordingly and met with better success.
Ther his father showed him how to place larger blocks at the
bottom. The boy tried aguin and met with more success and
showed the glow of accomplishment. Note that this experience
involves not only drill or practice but also elements of discovery.
The boy ix an active participant. He uses a combination of mental,
visual, and manual avenues of learning. IHe has uscd drill-experi-
ence in each of these avenues of learning. The intimacy of drill
as a part of learning is also apparent.

2. A ten-yvear-old girl has a slip of paper on which she has
written the number combinations “5 X 8 = 40, 6 X 8 = 48,
T X8 =568 XN =64,9 X 8 = 72" and has been told by her
teacher to say cach one 25 times and then to see if she can say
them without le "ing at the paper. The girl practiced faithfully
and could say them all when she went to bed but in school the
next morning she was unsure of 7 X & and 9 X 8. Privately she
then formed an association for remembering. For the answer 56,
she thought of 5, 6 as a sequence preceding 7 and 8. For the answer
72, she was told by a classimate to think of 80 and 8 less or 72.
Note that her first learning was characteristic of the rote drill of
25 vears ago and that the results were uncertain. Note also that
she discovered a way to remember 56. Only the answer 72 shows a
result based upon xome understanding and this was furnished by
another pupil, Here it is worth noting that pupils may do peculiar
things to help them to remember if not to learn. Her drill might
have been more fruitful and more enjoyable had she had op-
portunity to dis »ver, to think, and to reach conclusions with
guidance frora the teacher.

3. A group of junior high-school pupils is iearning to estimate
the size of an angle within tie range 0° to 180°. Previously these.
pupils have developed concepts of angles and angle measurement.
They have constructed angles with compasses and with the pro-
tractor and they have had experience measuring angles. These
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previous learnings are not only worthwhile in themselves but the
sequence is propaedeutic to learning to estimate the size of an
angle. For learning to estimate, the teacher draws angles of
several sizes on the board, pupils estimate, and the estimates ai¢
checked by measurement. A pupil suggests using a reference line
(right angle) to assist in the judgment. Such reference lines are
sktched. Otlier reference lines such as bisectors of 90° are imag-
ined. The teacher provides each pupil with a sheet of paper having
20 different angles in various positions and asks them to write
their best estimates of size. These estimates may later be checked
with a protractor. If reasonable limits of estimate have not been
achieved by some pupils, further instructional helps can be given
and more practice can be provided. Note in the above that a
meaningful approach was used and that the larger portion of
practice followed an opportunity to learn. This practice was closely
associated with learning and helped to provide sufficient thinking,
understanding, and drill to “fix” a more lasting impression. Of
course this teacher had used the procedute with previous groups
and knew about what to expect, how much practice was needed,
and when it was opportune.

The three illustrations were cited to show the meaning and
significance of drill in learning mathematics. Drill can be of many
types; it can be visual, manipulative, oral, written, or any combi-
nation of these. To be of most value it must always be accom-
panied with good mental processes. Later in this chapter, a brief
discussion of opportunities and needs for drill in learning the two
topics, fractions and equations, will e presented.

PSYCHOLOGY AND DRILL PROCEDURES

Psychology is concerned with modes of facilitating learning or,
more currently, ‘“‘change in the behavior” of the individual. The
role of drill in learning is both recognized and respected. But this
is a drill as previously described and not the abstract rote drill
which {or so many years characterized the teaching of mathe-
matics. Investigations and the accumulated experience of experi-
mentalists in education tend to agree on many principles in the
psychology of drill. Those that are most applicable to learning
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mathematics are the following:

1. The educational climate, atmosphere, or rapport of a class
has a tremendous effect upon learning.

2. The ideas associated with incentive, drive, purpose, and
goal have a strong bearing upon learning.

3. Schools (pupils) achieve just about what is reasonably ex-
pected of them. That ig, unless it is an exceptional case, a school
in which the achievement in arithmetic is poor, has not honestly
tried to achieve good results.

4. For many pupils and for certain types of situations the
initial response or conclusion in learning seems to have a more
lasting impression than subsequent responses.

5. Factors that are almost indiscernible frequently effect learn-
ing. These include community mores, status of the school, dress
and whimsey of the teacher.

6. Pupils like to make progress and to know when they are
learning. They respond to praise more than they do to con-
demnation.

7. Children should become organizers, systematizers, group-
ers, and classifiers of learning instead of “isolators’’ thereof.

8. At certain ages or occasions children seem to delight in
rote learning particularly if there is a rhythmic cadence or a
sing-song sound.

9. Children, particularly younger children, seem impelled to
use the kinesthetic avenue of learning.

10. The mode or avenue through which a thing is learned
seems to have an effect not only upon the enjoyment of learning
but also upon the rates of both learning and forgetting.

PRINCIPLES OF DRILL

Over the years several principles concerning drill have become
recognized as generally sound and applicable to many situations
in the teaching of mathematics. It must be remembered however
that conditions surrounding a circumstance or situation may be
the critical factor, and thus a general principle is only relatively
sound. The following have basis in experiment and in tested
teaching:
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1. The learner should both understand what he is practicing
and appreciate its significance to him as an individual.

2. The learner should have sufficient propaedeutic experience
g0 that the newness in what he is practicing does not create a
mental block for him.

3. The learner should be an active participant both in setting
his goals and in the thinking-striving aspects ¢f learning. He
should not merely repeat “parrot-fashion” from a veacher or
textbook.

4. Drill should follow the developmental and discovery stages
of learning and be used to reinforce and extend basic learning.

3. Drill should be varied so that procedures do not become
monotonous and so that different pupils have types of drill per-
haps better suited to them.

6. Drill should be spaced so that (a) time is not wasted in
excessive overlearning in initial stages and (h) previous learnings
are kept fresh and useful.

7. Drill should be an integral part of various phases of learning
but should not be used to hasten the achievement of results at the
sacrifice of meaning and understanding.

8. Drill policy should recognize different rates and modes of
learning with different pupils and not try to fit all into a com-
mon mold.

9. In general, it is better to provide for drill upon whole
processes rather than parts thereof, unless some particular part
such as, for example, subtraction in a long division exercise causes
trouble and needs teaching and practice for reinforcing.

10. Drill should be done with correct processes lest a child
practice errors which need to be remedied later.

11. Drill should be based upon or involve thinking and insight
s0 that it never becomes a mere mechanical repetition.

12. Drill should be vsed when and where needed. Tt should not
be used as a punishment nor should things already well learned
be assigned for more practice,

13. There should be some sense of organization of drill so that
(a) pupils see the sense and relationships of what they are doing,
and (b) important elements are n- . overlooked.

14. It seems that pupils of lower mental abilities require more
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drill than the more able but this may be due to other related
factors such as attention, insight and other such causes.

THE USNES OF DRILL

What useful purpostes are served by drill procedures in the
teaching of mathematics? Why' is it necessary to repeat a thought
or a performance to insure learning? It it not possible for pupils
to gnin complete learning by gaining insight and thus require
none of the repetitive work? Under certain conditions, with certain
pupils, and with certain materials complete and lasting learning
seems to be achieved in one experience. All good teachers can
textify to this but they also admit that in most cases drill pro-
cedures are required. The old adage “practice makes perfect'’ is
unsound logically and untrue experimentally. In any learning
situation there are many variable factors which a teacher can
only partially control and hence it is not possible to prescribe
precisely when, where, and how to use drill, However there ix now
general agreement that drill, practice, or recurring experience are
useful:

1. To fix for more facile recall and for greater usefulness infor-
mation whose significance is understood; for example, the fact
that 60 minutes equal one hour.

2. To gain proficiency in handling a mathemutical process or
procedure after it has heen studied and its usefulness established;
for example, subtraction, =olving equations and other .uch ac-
tivities.

3. To enhance and enlarge the understanding of a concept
whose basie principle or idea has heen established; for example,
drill upon subtraction situations or ipon the cuncept of the
tangent of un angle.

4. To improve the understanding of and the ability to use a
generalization after it his been developed and stated; for example,
the generalizations “cost equals number timee price’ and “quanti-
tiex equal to the =ame value arve equal.”

5. To review and refresh processes after a period of disuse;
for example, column addition, and solving linear equations.

6. To encourage and develop the ability ard the will to specu-
late, to discover, and to disxcern in terms of mathematical relation.
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ships and principles; for example, to discern that 6 x $4.98 is 12¢
less than $30.00, and to recognize linear relationship of two vari.
ables from a chart of values.

7. To learn to sense the mathematics in a situation and con-
versely to project mathematical principles into socio-economic
situations and draw valid conclusions in terms thereof; for ex-
ample, buying by dozen o/ pound or estimating the amount of
meat needed for 20 people.

8. To gain confidence through mathematical success and thus
erase the fear that many people have of a situation that is mathe-
matical; for example, 2ote how many times someone fears to
record and total the bringe score,

9. To feel the thrill ri achievement of having mastered some-
thing. This is differsat {rom but yet comparable to mastery in a
physical task or spert.

' VAMPLES OF DRILL IN MATHEMATICS

Drill is a valuable part of learning. It should never be a sole
mode of learning. It naturally follows the discovery and develop-
mental phases of learning. Drill is conceived to be practice or
recurring experience in which there is a recognizable element of
similarity from one experience to another. This element of similar-
ity must be apparent to the learner. In this discussion drill is not
mere repetition. It is extending and applying previous experience
for the sake of learning which is important to the individual
learner. Drill procedures are applicable to all aspects of learning
and should be employed. Thus drill applies to the learning of
concepts, the development of mathematical principles, the mas-
tery of a process, the ability to sense a problem situation, the
reasoning through a situation, the feeling of a need to verify or
check, and the final ability to use mathematics in the world of
affairs. Tn addition to these mathematical uses, drill and experi-
ence sught to be used in the development of a spirit of inquiry
and discovery, in fostering good habits of thinking and work, and
the desire and ability to discern and judge.

It should he remembered that the methods of drill in learning
mathematics cannot be reduced to simple laws governing the
factors: (a) when to drill, (b) how much drill is needed, and (c)



DRILL—PRACTICE—RECURRING EXPERIENCE 199

what form should the drill take. It is not wise to attempt to use
laboratory results or piecemeal researches in setting a program of
drill or of total learning. A human being is more than an assem-
blage of its parts and a public school has many influences and con-
ditions that make “controlled learning’ untenable as a postulate.

In order to show in brief scope the range of possibilities in drill,
illustrations will be given for two topics: (a) fructions from the
arithmetic of the elementary =chool, and (b) equations from
algebra. In each caxe learning will be carried from the stage of
concept development to functional usefulness in real life.

DRILL IN FRACTIONS

1. The concept of fractions. As children learn about parts as
fractions of some whole thing such as an apple, cookie, or piece of
paper, and the associated words of half, third, and fourth, they
<hould have experience in actual cutting, in drawing lines to show,
in talking about, and in 1ecording or writing fractions. Each of
these experiences is practice or drill, it is both recurring and devel-
opmental and is a vital part of learning. Similarly, the idea of a
fraction representing the part or parts of a group or collection
of items such as cows, people, and books must be presented,
experienced, practiced. And other phases of the fraction concept
such as the comparizon of two groups and expressing this as
fraction must have drill at the appropriate time. Later when the
fraction as an expression of comparison is extended into the con-
cept of ratio, this too requires practice. At all stages it is desirable
to “fix’" ideas through recurring experience. This inclu.” s manipu-
lative experience, visualization, oral mental, and written mental.
Usually, concepts develop slowly and it is desirable to enlarge
them over a long period. This applies particularly to those such
as fractions in which there is a large variation in complexity.

2. Principles of fractions. It is probably unwise to set separate
and distinet practice of most of the general prineiples of fractions
beeause these are better handled as outgrovths and deelopments
from the concepts of fractions and the need and use of them in
<uch operations as addition and multiplication. But, these prin-
ciples need to be developed and practiced. The most important
are: (n the whole of anvthing is the sum of its parts and such
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attendant ideas as 4, or 35, or 5 make up one whole and when a
part is lacking, the remainder (from a whole) can be easily de-
termined: (b) the meaning and function of the two numbers that
make up a fraction and the relationship of numerator to de-
nominator; (c) the effect upon the value of a fraction when both
terms are multipiied or divided by the same number and when
the same number is added to or subtracted from hoth terms; and
(d) the various relationships of common fractions to decimal
fractions ranging from concepts to principles and manipulations.
Principally drill or practice must be on the understanding and
use axpects o that children learn to think with and in terms of the
symbols and are able readily to answer such questions as “How
much is it?” “Which is more?” “What happens if . . > It will
be apparent that visual and manipulative impressions leading to
principles will need practice as well as the principles represented
in symbolic notation. Each of these is a reinforcement of the other.

3. Computational skills with fractions. Again, skills should rest
upon a basix in understanding and this understanding comes
through several avenues: (a) visual impressions, (b) manipulation
of real things and models, and (c) study of the numerical facts
and ro ationships in the symbols. Practice of each of these types
of learning which lead to computations and manipulations with
fractions is needed. The following types of abstract or process
work also require practice if the pupil is to gain proficiency and
independence: (a) changing from one fraction to an equivalent
fraction (reduction, mixed numbers, improper fraction, and such)
for use in comparisons, judgments, and computations; (b) adding
and subtracting fractions; (¢) muitiplying and dividing fractions;
(d) expressing a common fraction or ratio as a decimal fraction
and in equivalent percentage notation; and (e) raising to powers
and taking roots. In general whole operations of the simpler types
should be learned and practiced first. However, special practice on
a sub-step often is desirable as for example the case of “changing”
in the minuend in subtraction. An examination of textbooks sug-
gests that most drill in fractions is given to thix group of manipu-
lative <kills. However, that should not he the case if genuine
meaning and functional competence is held as the aim of instrue-
tion. Most good schools now have models and visual aids which
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may be used by pupils to gain insight into operations with frac-
tions. Further understanding and significance is achieved through
study and practice with the relationships inherent in the symbols
and notation of fraction

4. Functional competence with fractions. Ability to (a) sense a
use of fractions; (b) recognize and understand the essential prin-
ciples involved; (c) know what to do, to think through the situ-
ation; (d) perform the necessary steps of computation; and (e)
verif v and feel confident of a conclusion are phases of a genuine
functional competence with fractions. The development of these
abilities is not an automatic consequence of study unless the work
is directed to that end. Thus, as the various phases of fractions
‘concepts, principles, and skills) are being learned, they should be
tied to functional situations. This tying to experience and in turn
the study of experience for its fraction content are things that
require drill or practice. Children tend to learn that which they
try to learn. Certainly we cannot expect them to learn to sense
uses of fractions and to use them if they are not given opportunity
to practice this. And this practice must involve a good deal of
thinking.

DRILL IN ALGEBRAIC EQUATIONS

1. Readiness and pre-equation learning. In all elementary schools
much practice is given to number facts stated in equation form;
eg,3 X7 =2land16 — 9 = 7. This should and does provide a
basic understanding for algebraic equations which come much
later. Similarly, the use of the question mark (?) to indicate an
unknown value is common practice;e.g.,d + ? = 11,7 X ? = 56,
and 3; = ?, 12, At a later stage, the statement, the writing, and
the evaluation of formwulas provide a basis for equations; e.g.,
1 = PRT, A = } bh, and C = =xd. The thinking involved in
solving inverse cases based upon formulas is essentially algebraic.
A number of elementary school experiences lead direcily to basic
axioms of algebra; for example, the equality of 2 dimes and a
nickel, a quarter, and 25 pennies. Thus it is apparent that both
in modes of thinking and in technique the wor ~f Grades I-VII
has laid a basis for equations. However, the valuc of this basis
depends in large measure upon the methods of thinking and of
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work used by teachers and pupils. All of these items huve been
involved in recurring experience or drill. Another item of learning
that is important in writing equations and in thinking about them
and which is usually given separate practice is that of writing
algebraic representutions for unknown quantities and relation-
ship= involving them. For example, the age of George 9 vears ago
may be represented by X' - 9 if X is his present age, or by .\
if his age now is X' + 9. This aspect of equation writing is so
important it should receive considerable practice.

2. Solting linear cquativns. The solution of equations follows a
fairly well established pattern in terms of sequence with solutions
based upon basic axioms coming first and followed by short-cut
methods employing such techniques as “transposition’’ and “mul-
tiply by the common denominator.” As in other work, it is most
desirable for basie learnings to precede practice so that drill may
be meaningful and fruitful. The following steps or phases of solving
linear equations require practice: (a) solutions employing sep-
arately and uniquely each of the equality axioms of addition,
subtraction, multiplication, and division; (b) solutions using the
basic axioms in combination: () solutions using short cuts such as
transposition and *‘eross-multiply"*; and (d) verifying and check-
ing solutions. Most textbooks provide adequate amounts of prac-
tice in the solution of equations. They do not, however, and
probably cannot. direct the thinking of the pupils so that they
reach a high level of appreciation and understanding. This under-
standing tends to resuit in a slower rate of forgetting and also it
provides something to rebuild upon when a pupil is temporarily
stymied in a solution. Furthermore it provides the basis for trans-
fer from one type of exercise to one that is slightly different.

3. Writing equations. The real essence of algebra is probably
more involved in the writing of algebraic relationships and equa-
tions than it is in the manipulations involved in the solution of
equations. The ability to represent algebraic relationships in equa-
tions ix rather subtle; it ix not one that can easily be isolated and
drlled. It involves a collection of abilities which seem to be en-
hanced by native intelligence. However, drill, practice, or experi-
ence upon certain phases of algebraic representation and with
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particular emphasis upon thinking seem to be fruitful. These are:
(a) appreciation of the significance of and the ability to locate
the more basic unknown value and represent it symbolically as
for example by X or .\; (b) learning to think and to express
orally and in writing simple relationships; e.g., 2X + 3 represents
five more than twice some unknown value; (¢) the ability to think
through and to represent the combination of algebraic expressions
by processes such as addition and also to express equality in an
equation: (d) ability to rearrange or reverse the relationships
leading to an equation and thus provide a second approach or
check to a solution of a basic problem; and (e) ability to write
equations from any reasonable situation or problem where rela-
tionships are linear.

SUMMARY

1. The terms “‘drill," “practice,” and ‘‘recurring experience"
are used to denote that aspect of learning which has a recognizable
element of commonality that is repeated. While these terms are
not synonymous, they suggest a broader vision of the nature and
role of drill than that commonly held a decade ago.

2. Drill, broadly conceived, is both important and necessary in
learning mathematics. It is really a part of the learning process
and when properly applied aids in understanding as well as in
proficiency. The importance and need for drill are little conditioned
by the “brand’ of psychology one accepts.

3. Because of the many attendant and variable factors in a
classroom it is not possible to state precise rules governing the
when, the how much, the where, and the how to use drill.

4. Drill, practice, or recurring experience should be used with
all phases of learning mathematics beginning with methods of
discovery. the development of concepts, habits of work, and carry-
ing through to the computations, thinking, and judgment that are
essential in achieving functional competence and independence for
the individual.

5. It is the teacher’s responsibility to plan appropriate experi-
ences to provide, at optimum times, for leurning and drill.

6. The diagram below shows elements and relationships in
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learning mathematics. Recurring practice or drill is needed not
only on the several aspects or elements but also on the connections
between them.

Mathematics
Concepts ~ Information - Principles — Relationships - Solutions

Experience — Learning ——— Experience

! t 1 ! ! !

Incidence — Discovery — Understanding — Functional Use



7. Transfer of Training

MyRroxN F. RosskoPF

O~k of the leading students of transfer of training summarizes
in a recent study the results of experimental research in the fol-
lowing words:

First, transfer is a fact, as revealed by nearly eighty percent of the
studies: second, transfer is not an automatic process that can be taken
for granted, but it is to be worked for . ..; and third, the amount of
transfer is conditioned by many factors, among which are: age; mental
ability ; (possibly) time interval between learning and transfer; degree
of stability attained by the learned pattern; ‘‘knowledge of directions,
favorable attitude toward the learning situation, and efficient use of past
experience’’; accuracy of learning; ‘‘conscious acceptance by the learner
of methods, procedures, principles, sentiments, and ideals’ ; meaningful-
ness of the learning situation; the personality of the subject—greater
transfer in extroverts than in introverts; method of study; suitable
organization of subject matter presentation; and provision for con-
tinuous reconstruction of experience (12).

All of these factors that condition transfer are relevant, but only
the last two will be considered in any detail in this chapter.

Transfer of training theories change as psychological theories
of learning change. Each new development in the psychology of
learning leads to new experiments on transfer of training and to
reinterpretation of the results of past experiments. In order to
understand currently accepted conclusions with respect to trans-
fer of training, it is necessary to know the background for these
conclusions.

DOCTRINE OF FORMAL DISCIPLINE

The doctrine of formal discipline is based on what is known as
“faculty psyvchology.” Faculty psychology postulates that the
mind is composed of several faculties such as the will, memory,
judgment, and the like. The theory of learning called formal dis-
cipline holds that these mind faculties can be trained by exercise.
The material studied or learned is not important but the hard

205
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work for the mind involved in the study and in the learning is
most iniportant.

The point of view represented by the Comumittee of Ten of the
National Education Association is typical of the theory of learn-
ing practiced in the latter part of the nineteenth century. The
Committee of Ten was organized in 1892 to survey secondary-
school practices and to make recommendations for improvement
of practices; the following sentences reflect the point of view of
the majority report:

‘The mind is chiefly developed in three ways: by cultivating the pow-
ers of discriminating observation; by strengthening the logical faculty
of following an argument from point to point; and by improving the
process of comparison, that is, judgment . . . studies in . . . mathematics
are the traditional training of the reasoning faculties. .. (11).

Thus, it was held that formal work is the best way to facilitate
transfer of judgment, reasoning, and observation to problems of
living. The particular xchool subjects studied do not make much
difference, it was believed, so long as they are difficult (provide
sufficiently hard exercixe for the faculties of the inind) and can
be presented in a series of formal lessons. The improvement in
reasoning acquired in mathematics, for example, would so develop
the faculty of logical thinking that there would be transfer of the
ability to reason logically to history or science or languages.

The doctrine of formal disecipline is, of course, discredited as a
means of learning that facilitates transfer. Even some members of
the Committee of Ten disagreed with the majority report and
presented a report of their own. Some nineteenth-century psy-
chologists realized that there seemed to be little carry over from
training received in one area to another area. For example, Wil-
liam James experimented with improvement of memory and found
results based on formal discipline to be very unsatisfactory. The
death-blow was struck by the publication in 1901 of the thorough
and scientific investigations of Thorndike and Woodworth. From
that date, no psychologist insisted upon faculty psychology or
formal discipline. And yet, methods of instruction that are used
by many teachers today are based on formal discipline. The
appeals of lay people (and some educators) for a return to the

e
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good old days of really “hard” instruction imply a theory of
learning based on formal discipline. It is distressing to find so
much mathematies and so much mathematics teaching based on
an outmoded theory of learning. Authoritarianism is seen so often
in a mathematics classroom; a teacher points out the correct
response, students accept it, and then practice applications of
the correct response. The practice exercises are graded from simple
to difficult in ‘“‘good” textbooks, but there is little opportunity
provided for students to explore or to discover or to organize
experiences. During the past 50 years much sound experimental
evidence has been accumulated that proves such instruction to
be ineffective in the promotion of transfer.

Instruction in upper secondary-school mathematics particu-
larly, easily falls into the stereotyped form implied by the doetrine
of formal discipline. Because of the rigor required by logically
organized subject matter, it seems difficult to break away from
teaching that is showing students how to reach correct solutions
to problems. However, there are accounts of experimental work
in mathematics classrooms {9, 5) that are encouraging. Teachers
in these classrooms are attempting to put into practice a theory
of learning that is currently acceptable and, that experimental
evidence indicates, promotes maximum transfer.

DOCTRINE OF IDENTICAL ELEMENTS

As was pointed out in a foregoing paragraph, many psycholo-
gists and educators protested the doctrine of formal discipline on
philosophical and logical grounds. William James is credited with
being one of the first psychologists to test the doctrine of formal
discipline experimentally. His experiments, conduzted about 1890,
are crude according to contemporary standards of psychological
research, but the results that he obtained showed ttat formal
discipline has little effect on improvement of memory. The account
of the historic experiments of Thorndike and Woodworth were
published in 1901. It is in these papers that the doctrine of iden-
tical elements was stated: ““Spread of practice occurs only where
identical elements are concerned in the influencing and influenced
funetion’” (15). Their method was to give students practice in
estimating the areas of rectangles varying in size from 10 sq.




208 THE LEARNING OF MATHEMATICS

°m. to 100 sq. cm. They found that the students showed con-
siderable improvement in estimating the areas of small rectangles
if they were given the correct area after cach estimate. But when
the students were presented with the problem of estimating the
area of a large rectangle or the area of a figure of a different shape,
it was found that the students showed little improvement.

As experimental evidence accumulated during the next 20 years,
Thorndike and others added to (he theory of associationism. For
it is from the psychological theories of learning called asxociation-
ism and connectionism that the doctrine of identical elements
emerged. There is a question of what is meant by identical ele-
ments. Are identical elements to be understood in terms of train-
ing specific individual abilities? Or, are we to understand that
identical elements in two situations include hoth specific abilities
and the statement in words of a principle used in a learning situa-
tion? Woodworth in a recent statement believes that a correct
formulation of the theory is as follows:

The more definitely the principle is isolated, even to the extent of
formulating it in words, the more chance of transfer . . . if the principles
are embodied in words, they are concrete bits of behavior and their
transfer from one situation to another creates no difficulty for the theory
of identical ¢lements (18).

According to Gates’ interpretation of Thorndike’s theories, he
“‘used as equivalent to ‘elements’ such words as ‘aspects,’ ‘factors,’
‘features,’ and ‘relations’. . .. His concept . . .can, in fact, include
anything as ‘elements’ which investigation proves to be actually
operative” (3).

Hence, it appears that Thorndike developed and expanded his
theory as evidence accumulated. Early interpretations of identical
elements as specific components of a learning situation were ex-
tended to include words or components that were complex. Ac-
cording to an eclectic point of view, the interpretation of “‘iden-
tical elements” can be as broad as the interpretation of “structure’’
by gestaltists. For example, Thorndike writes,

The newer pedagogy of arithmetic, then, scrutinizes every element of
knowledge, every connection made in the mind of the learner, so as to
choose those which provide the most instructive experiences, those which
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will grow together into an orderly, rational system of thinking about
numbers and quantitative facts (14).

Later in the same volume when he is discussing the psychology
of drill in arithmetic, he says:

As each new ability is acquired, then, we seek to have it take its place
as an improvement of a thinking being, as a co-operative member of a
total organization, as a soldier fighting together with others, as an ele-
ment in an educated personality. Such an organization of bonds will not
form itself any more than any one bond will create itself. If the elements
of arithmetical ability are to act together as a total organized unified
force, they must be made to act together in the course of learning, What
we wish to have work together we must put together and give practice
in teamwork.

.. . every bond formed should be formed with due consideration of every
other bond that has been or will be formed, every ability should be practiced
tn the most effective possible relations with other abilities (14).

The phrase “‘every bond formed” in the foregoing quotation
might be interpreted to mean that an operation in arithmetic,
or mathematics, is to be learned through direct practice of the
operation; that is, an operation becomes ‘‘fixed” in the mind of
a student through repetitive doing of exercises involving the
operation. An extention of this interpretation would be that trans-
fer is achieved through drill. Associationists say that this is a
narrow view of the doctrine of identical elements, that bonds
are formed through direct practice, but that the direct practice
must be of such a kind that it takes into account other (related)
bonds, together with the attitudes, fatigue, set, purpose, and the
like, of the learner.

One other observation will be made concerning the doctrine of
identical elements. The percentage of transfer from one learning
situation to ancther learning situation is always less than 100
per cent. Direct practice in one learning situation increases the
success in that situation but the success in another learning situa-
tion is proportional to the number of identical elements in the
two situations. It seems, then, that the amount of transfer will
depend upon doing over again in a second situation those elements
or components that are common to it and a first learning situation.
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Orata in his most recent survey of the evidence for transfer of
training states, "‘As the theory of identical elements tends to
beconie obsolete, the role of insight and generalization becomes
more thoroughly established (12).” Orata has made an intensive
study of the doctrine of identical elements and its relation to
transfer of training. In the experimental studies that purport to
support the theory, he clearly shows weaknesses both in «xperi-
mental design and interpretation of results. Because the drill
theory of instruction is based on the doctrine of identical ele-
ments, it is necessary to discuss it in some detail. More and more
evidencs is accumulating to indicate that students do not learn,
in any see~2 of Leing able to transfer or to apply what they have
learned, by practicing processes in isolation.

Practice of the same response merely increases facility in producing
that response, whatever its nature and its level of usefulness and ma-
turity. If one repeats the definition of some term without understanding
its meaning, one cannot through repetition acquire meaning for the
term, however proficient one may hecome in saying or writing or think-
ing the definition. ... For the definition . ..to pussess meaning, the
learner must respond to the definition . ..in a variety of ways (2).

However, it may not be wise to discard the doctrine of identical
elements entirely when we think in teris of educational practices.
There is an interpretation that can be given to some experimental
evidence that indicates there are important applications of the
doctrine. It is a question of timing and place. There are different
levels of work in mathematics. At one level a student is exploring
and discovering relationships (organizing his experience) in order
to arrive at a principle that can be used to solve new problems.
This is true of arithmetic, for example, in the introduction of each
new process. But when a student has passed this level and gone
on to a new process, his response to the old process must be al-
most automatic if he is to master in any effective way the new
process. When one comes in his school experience to the process
of multiplication, he must have passed bevond the exploration
stage in his mastery of the process of addition. Similarly, in the
teaching of trigonometry, the fundamental identities are devel-
oped with a class by helping them to organize their experiences
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with the trigonometric functions and to understand the rela-
tionships that exist among them. Students must go beyond this
understanding of the organization of relationships among the
trigonometric functions if they are to be successful in proving trig-
onometric identities. They must be able to give an immediate
response to any trigonometric function in terms of its related
identity. With this mastery, attention can be given to exploring
on a wider frontier. Without this learning or mastery, a student
will find the proof of trigonometric identities a hard, laborious
task.

It ix exactly in situations of the foregoing sort that drill, based
on the doctrine of identical elements, has a place in the teaching
of mathematics. That this is true is supported by the following
experiment carried on by Katona. Katona had three matched
groups. All groups were taught by a meaningful method but Group
[ was taught three tasks, tested immediately, and then four weeks
later; Group IT was taught the same three initial tasks but in
later teaching periods was taught different tasks that involved
the same principle as the initial tasks; Group III was taught the
same three initial tasks and in later teaching periods practiced
these tasks. All groups were tested at the end of four weeks on
the same three tasks as were taught initially, as well as on new
tasks. In describing the performance of Group I1I, Katona writes,

By reviewing the performance of this group solely with the practiced
tasks we find a perfect example for a practice curve. In the first inter-
mediate test a slightly lower score was obtained than in the immediate
test, but from the first to the fourth week the improvement proceeds in
 straight line. In the fifth test (main test) the 21 subjects of the group
committed only one error in solving the three old tasks. . . . Observation
of the hehavior of the group shows that we have here a performance
strictly comparable to the well-known cffects of practice by drill. ...
There was no “solving” of a problem, but rather a recall ¢f well-learned
data. Here we find reproduction instead of reconstruction (8).

In a footnote he quotes Breslich as follows: “Simplified routinized
processex are sometimes the outcomes of earlier understandings
that have been reduced to formulas which are merely held in
memory "’ (8),
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The point is that some processex in mathematics are used so
much in subsequent work that a student must have the sort of
mastery that is of the stimulus-response ~ort. That is, a student
must have this xort of mastery if he is going on into subsequent
mathematical work. In order to understand long division, one
must he able to substract and multiply; if a student is hesitant
in his multiplications and subtractions, this hesitancy is going
to get in the way of his learning division. Ior learning elementary
algebra, a student must be able to perform arithmetic operations
with facility. One could give example after example ot the sort
of mastery that is described here. A teacher must make a dis-
tinction hetween learning understood processes by drill methods
and helping to organize experiences in the development of new
concepts in order to achieve understanding. This is what was
meant by an earlier xentence stating that the doctrine of identical
elements depended upon timing and place for its use.

DOCTR'NE OF GUENERALIZATION AND MATURATION

Judd was one of the first psychologists in America to differ
with the doctrine of identical elements. In his writings he em-
phasized the importance of generalizations. He experimented with
subjects who were taught the principle or generalization involved
in a task and compared their performance with subjects who did
not know the principle. His objective was to test the effect on
transfer of knowledge of a generalization. Although his test group
was small and there was no control group, vet his conclusion
that knowledge of a principle facilitates transfer had a great
effect (7). Other psyghologists with better experimental techniques
did research that tended to support Judd's conclusions.

Beginning about 1912, a group of (lerman psychologists pub-
lished papers in which they criticized the attemptx of association
psychology to reduce the study of mental activity to elementary
and individual connections. These psychologists, Wertheimer,
Koftka, and Kohler, emphasized the importance of considering
complex “wholes” it order to understand mental activity. This
school of psychologists hecame known as gestaltists hecause of
their insistance that a human being reacts to a whole situation
or structure, rather than to the individual parts of a situation.
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They asserted that a person achieved undertstanding of the parts
of a structure only through an understanding of the whole struc-
ture. Out of elaborations of this thesis grew the familiar state-
ment of gestaltists that the whole is greater than the sum of its
parts.

Nince much of Judd's later writings uses some of the language
of the gestaltists but continues to stress the importance of gen-
eralization, some quotations follow that are illustrative of his
thesis.

It is of importance for an understanding of the nature of the higher
mental processes that there be clear realization of the fact that it re-
quires time and luborious reorganization of experience for the individual
to gain full comprehension of the meaning of the words which make up
the number system (6).

Notice the emphasis upon ‘‘reorganization of experience’ of the
individual. This phrase might have been made by a gestaltist, for
the gestaltists believe that insight or understanding or generali-
zation comes to an individual through reorganization or recon-
struction of experiences with a whole situation. It is this reorgani-
zation of experience that requires time for maturation. For
example, spaced drill has been found to be more effective, so far
as transfer is concerned, than concentrated repetitive drill.

At the higher levels of arithmetical thought and manipulation as well
as at the lower levels, it is not enough that the mind acquire mere rules
or suceessions of isolated ideas. There must be an organization of experi-
ence of a form that is .. . described by the term “conceptual.”

The view that all mental activities can be explained in terms of ele-
ments which are of the simplest and most primitive type overlooks al-
together the principle that . . . organization . . , accounts for life.

If psychology is to rescue education from the new formalism, which
consists in devotion to mere acquisitions of detached and unorganized
facts —if mathematics, the natural sciences, and all other school subjects
are to be taught by some method other than mere drill—there will have
to be clear recognition of the difference between the lower and the higher
forms of mental activity. The higher forms of experience will have to be
emphasized as the true ends to be reached by the processes cf education

(6).
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Snoddy (13) performed an experiment hvith human beings in
which the task consisted of drawing a star pattern by looking in
a mirror. He found that the movements of a subject were jerky
and undifferentiated at first. When a subjeet came to n “corner”
there was a delay in his movements; then, when insight into the
process occurred, movements speeded up and became smooth.
He called this hesitation a “period of initial delay.” Time had
to be allowed for an individual to organize his perceptions, to
differentiate among elementx of the pattern; in short, the in-
dividual needed to see how to proceed to make the “corner.”

In writing about the teaching of arithmetic, Wheeler and Per-
kins say:

A given number derives its meaning from its position in a whole.
4 is not only 4 but o much more than 3, so.much more than 2, so much
less than 3, so much less than 6, Just how much the difference is, must be
discovered in the course of maturation, induced through the stimulation
attending the use of the numbers (17).

It is througn many experiences with numbers or, more generally,
mathematics that a student grows in maturity of organization of
his experiences. Only through many experiences can a student
achieve the differentiations that lead to an understanding of the
meaning of numbers,

The grouping method of teaching number fucilitates the evolution of
relationships in the child’s thinking. .. the teacher cannot adequately
present the subject [that is, arithmetic] who does not understand the
logie of number herself. She must give to her pupils the simplest’ little
problems that will bring out the early forms of configurational response
to number stimuli (17),

A discussion of the doctrine of generalization and maturation is
important, because of its wide use in the teaching of mathe.natics.
Typically in secondary-school mathematics classes, a generaliza-
tion or principle is presented by a teacher, illustrated by applica-
tions, and then students are assigned problems that require use
of the principle in their solution. Such classroom instruction de-
perds upon students, understanding how a principle is built up
step by step from more elementary generalizations. In this re-
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spect the instruction isx good. Certainly, it is much better than
instruction that consists of presenting a way of doing the type of
operation under consideration and assigning practice exercises.
Early in his investigations Katona observed a ditference in be-
havior of ~ubjects taught by a method to promote understanding.
These observations led to experimentation with methods of teach-
ing for understanding. He compared the performance of a group
taught by the method of presenting tae principle or generalization
needed to solve a certain task with the performance of a group
taught by another method. At the end of a lapse of four weeks it
was found that the group taught by the method of generalization
performed better on old and new tasks than a control group or a
group taught by memorization. None of the groups performed
as well as a group taught by a met.iod that stressed the structure
of the task. In a footnote he writes about the group that was
taught by the generalization method as follows:

Sharp improvements and unexpected deteriorations in the accom-
plishment of individual subjects were the rule rather than the exception.
Learning by the abstract principle is thus characterized in our case by
a certain degree of instability (8).

DOCTRINE OF REORGANIZATION OF EXPERIENCE

McConnell writes, “Newer trends in the psychology of learning
emphasize the primacy of organization” (10). It is easier to illus-
trate this principle than it is to describe the principle. Human
beings, as well as animals, react to a constellation of stimuli rather
than to each element-stimulus of the constellation. It is the struc-
ture or the organization or the relationships that a student sees
in a mathematics problem that permits him to arrive at a solu-
tion. For example, Brownell writes:

What one does when one learns is to attack the new problem with
whatever reactions are available, These reactions are seldom if ever of
the blind trial-and-error variety, but represent forms of behavior which
have been connected previously with some aspect of the problem situa-
tion. Thus, at the very outset of learning, we encounter organization of
behavior. .. (1),

On the basiz of experimental studies, Brownell concludes that
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learning takes place as a result of reconstruction or reorganization
of experience. Trial-and-error learning in the usual sense of the
phrase does not exist. A student may seem to he making efforts
at random to solve a problem as an observer who knows how to
solve the problem looks on. But these efforts are not at random
at all for the student. They are evidence of his attempts to or-
ganize his past experiences, to reconstruct from them a way of
attack, to see relationships between this new problem and past
problems.

Katona has done extensive experimental work on learning by
reorganization of experience. lle makes the following comments
concerning the results of a card trick problem that he presented
to students.

These observations . . . characterize the process of reproduction [of the
card trick] on the part of the “meaningful learners.” The subjects pro-
ceeded to discover or to construct the solution, and the preceding train-
ing helped them to do so. Reproduction was not at all similar to a door
bursting open, because a button has been pressed—it did not consist of
the presentation of an ever-ready response to the appropriate stimulus.
It was more like the processes of discovery, of problem-solving, and of
construction. Remembering can here be best characterized as a redis-
covery—a reconsiruction. The effect of learning was ability to recon-
struct (8).

In summarizing the results of his investigation of methods of in-
struction to be used in his experinients on learning and on transfer
of training, he makes the point:

Both problem-solving and meaningful_ learning consist primarily of
changing, or organizing the material. The role of organization is to
establish or to discover or to understand an intrinsic relationship. ..
learning by understanding consists of grouping (organizing) a material
so a8 to make an inner relationship apparent (8).

Using a method of instruction that helped subjects to see the
structure of a task and the relationships that existed between the
form of the task and its solution, Katona found more than 100
per cent transfer. That is, subjects taught by this method per-
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formed the practice tasks about as well when tested at the end
of four weeks as they did at the beginning of the experiment, but
they performed better on new tasks than on the practice tasks. In
his discussion of the experiment he writes:

The process of gradual organization, the slow transition from a worse
to a better state of affairs, from a bad to a good gestalt, is just as im-
portant for the-psychology of meaningful learning as is the flash of
1usight.

We need the concept of gradual meaningful learning to understand
the learning process. . .. The thesis that a single exposure is sufficient,
that repetition is not required, cannot be justly applied to learning by
examples or help. Only if we falsely define “repetition” as the repeated
occurrence of the identical contents A, B, C, D and their apperception
in an unchanged form at several successive presentations, may we say
that repetition cannot occur in meaningful learning. But by using the
term in a different sense, the successive steps in the method [of instruc-
tion] of examples may be said to constitute repetitions. . . .

Repetition . . . is not repetition of one set of identical elements, rather
it is a gradual development of structural features. One does not do the
same thing over and over. On the contrary, one is always passing on to
a more advanced performance (8).

To secure maximum transfer, in the sense of applying “an in-
tegrated knowledge. [a whole principle] . .. to all tasks involving
the sarie principle” (8), teachers of mathematics must teach in
such a way that demonstration exercises (or tasks) serve as ex-
amples of the application of the principle. If the learning is di-
rected by a teacher toward an understanding of how a well
envisaged structural situation can be solved, a student’s prob-
ability of success in applying the principle to a strange, different
structure that requires for its solution application of the same
principle will be greater than if learning is directed toward memo-
rization or generalization. The principle need not be verbalized
by students. In one of his experiments, Katona asked his subjects
the following question:

Try to formulate in a few words the main point or principle of the
tasks on which you have just worked. What is the essential thing you
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have to know in order to be able to solve such tasks? I do not need exact
definitions; a hint at certain ideas you have in mind will suffice. You
will have three minutes in which to write (8).

He found that the answers to this question were unsatisfactory:.

There was no correlation between the few satisfactory answers and
the performance of the same subjects as revealed by their scores. Many
subjects who solved all or most of the tasks were, nevertheless, unable
to give an account of the problem’s main points.

This result reveals that it is very difficult to express in words what is
required to solve such tasks. The ability to solve the tasks can be ac-
quired without verbal formulation of what has been learned and suc-
cessfully performed. Conversely, formulation alone is no guarantee of
good performance (8).

Although Gertrude Hendrix frankly admits that her results
need to be tested further, enough experimental work has been
done so that the following hypotheses are emerging from the data:

1. For generation of transfer power, the unverbalized awareness
method of learning a generalization is better than a method in
which an authoritative statement of the generalization comes first.

2. Verbalizing a generalization immediately after discovery does not
increase transfer power.

3. Verbalizing 8 generalization immediately after discovery may ac-
tually decrease transfer power (4).

The implications of the bservations of Katona and Hendrix
for the teaching of mathematics are clear. In the first place, when
a class is introduced to a new concept there must be active student
participation in discovering the concept and how to apply it. Such
active student participation will depend upon adroit questioning
on the part of the teacher and upon his sensitivity to the progress
of the class in its exploration of the concept. As soon as the stu-
dents are aware of the concept, they are ready to apply the con-
cept. They are ready for practice problems, if you like, or for an
opportunity to solve new tasks that are different from the demon-
stration examples but require the concept (used here as a syno-
nym for principle or generalization) for their solution. At this
stage of progress of the students a teacher must be satisfied with
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students understanding how to apply the concept; no attempt
should be made to have the students state the principle in words
nor should the teacher give the statement of the principle in words.
One might say at this stage that students should work intuitively.
Ntress should be put on “‘grouping, reorganization, structurization,
operutions of dividing into sub-wholes and still seeing these sub-
wholes together, with clear reference to the whole figure and in
view of the specific problem at issue” (16).

If achievement of maximum transfer is an objective of the
teaching of mathematics, then at every level an effort must be
made to use a developmental approach in a classroom. By teach-
ing <o that students reorganize their experiences and become
aware of how the overall structure of a problem is related to its
elements a teacher can achieve with those students a disposition
to use mathematics that cannot be achieved as well by any other
method. Every teacher believes that ability to state a principle
in words represents a higher level of understanding. That is true,
but this higher level of understanding, represented by ability to
verbalize, is a level that is approached when a principle (or prin-
ciples) is needed for investigation of a topic in mathematics. It is
necessary that a teacher be able to verbalize principles and gen-
eralizations and concepts of mathematics if he is to be able to
use the developmental approach in a classroom. A teacher must
be conscious verbally of a principle in mathematics, even though
it i~ not necessary for students at the beginning to go beyond
heing aware of the principle.

SUMMARY

Thus, we see that, except for the first, each of the theories of
tranxfer of training discussed in thisx chapter has implications for
the teaching of mathematics. It is not necessary to regard the
theories ax mutually exclusive; aspects of the doctrines of identical
elements, generalization, and reorganization of experience are
applicable in mathematics classrooms. Of the four theories of
transfer that have heen formulated, that of formal discipline is
the only one that is thoroughly diseredited. All of the others are
accepted. if not totally then in part, by all groups of psychologists.
There rerauins much experimental work to be done on transfer.
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Not only do we need to learn more about what is transferred, but
we need to experiment to see how transfer can be facilitated. But,
and this is important for all teachers, experimental research in-
dicates that transfer is a fact. How to make the percentage of
transfer larger is a problem that every teacher recognizes and
that every teacher works on in his own classrooms.

After Thorndike and Woodworth, the most important formula-
tion of a theory of transfer of training is that given by Judd in his
doctrine of generalization. Judd was the first to experiment with
the effect of knowledge of a principle involved in a task on trans-
fer. He pointed out the importance of uncerstanding of concepts
and experimented with the effect of such understanding on skills.
In many respects, Katona's experiments are elaboration of this
idea and a filling in of details. Tearhing for understanding and
teaching meaningfully are phrases that are common today.
Katona and Hendrix give valuable hints on methods of instrue-
tion that promote t.ansfer. Both stress the importance of dis-
covery, of exploration, of 1sconstruction or reorganization of ex-
perience. Both stress the importance of non-verbalized knowledge
of a principle. In the teaching of mathematics there has been too
much insistence upon students’ telling (verbalizing) a principle
or a generalization and not enough observation of students' apply-
ing & principle. More attention should be paid to a student’s
saying he understands how to do a problem but cannot tell how
to do it. For the percentage of transfer is larger when a meaningful
method of instruction is used that does not stress verbalization
of the principle involved in the assigned tasks.

A program of mathematies teaching that will develop the largest
possible transfer might be outlined ax follows: (a) Teaching should
be for understanding; for developing concepts. This means that
the methods of exploration, discovery, and organization should
be used. At this stage a teacher should be satisfied with a student
being able to xolve tasks that require use of the concept. for their
solution; at this stage there should be no attempt made to have
students or the teacher verhalize the concept (of course, it is not
implied that verbalization by a particular student should be dis-
couraged). By presentation of examples and working them out
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together, teacher and students can achieve the sort of under-
standing that seems to give maximum transfer. (b) After under-
standing is assured, enough practice is furnished students so that
they will have an opportunity to reorganize or reconstruct ex-
periences in terms of the concept involved. In case the concept is
one that is a routine part of larger problems—like addition or
multiplication in arithmetic, or operations with signed numbers
in algebra—the practice should be of the stimulus-response type.
In such a case drill has a definite place in a program of mathe-
matics teaching. (c) Those students who progress to higher levels
of mathematics study should learn to verbalize principles that
are appropriate to their level of progress. For these students, a
teacher should insist upon their being able to tell how they do
problems. These are the students who are studying mathematics
because they are going to use its principles in other areas or be-
cause they have a love of the subject itself.

From the accounts of experimental work that has been done
with mathematics groups it is not clear what the implications of
research on learning and transfer of training are for general mathe-
maties courses or mathematics courses in general education. It is
safe to conclude, however, that teaching for understanding and for
formation of concepts should be paramount. But answers to the
following questions await further research. How much practice
work should a general education course in mathematics include?
How much effort should be made in such a course to achieve an
immediate response sort of learning? How much verbalization of
prir.ciples should there be?

Discovery and exploration through many examples that use the
same concept should be the means of instruction in a general
education mathematics course and the end should he applications
of the non-verbalized concepts to new problems. If this objective
were achieved in a general education course, there would be more
adults with a greater disposition to use mathematics in quantitative
situations. A variation of this suggested conduct of a general
education course could be teaching by discovery and exploration,
presentation of the principle verbally, and use of the principle
in examples but with no ipsistence upon memorizing the principle.
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EXAMPLES OF TEACHING FOR TRANSFER

The following examples of evidence of transfer.of training or of
good teaching for transfer are not theoretical examples. These
are classroom experiences of the writer or of others who have been
kind enough to contribute examples.

At one time there were in a twelfth-grade mathematics class a
few boys and girls who were outstanding students in painting
but somewhat casual students in mathematics. Required of all
students in the class was a special project that could consist of
the construction of a model, a report on some library research, or
& report on an extension of an individual’s knowledge of mathe-
matics beyond the requirements of the course. The mathematics
department of the school had bought earlier two books on dy-
namic symmetry. It was suggested to the boys and girls interested
primarily in painting that they read these books and do paintings
laid out according to the tenets of dynamic symmetry. Two of the
students became deeply interested in the problem, studied the
available books thoroughly, and interested their whole class in
painting in root squares and whirling squares. These two students
each completed excellent paintings as their projects for the course.
The paintings were abstract, of course, using dynamic symmetry
for their design and mathematical figures for their material.

Because these students saw a relationship between their primary
interest and mathematics, they began to be more serious students
of mathematics. Both of their areas of interest benefited. The
students’ enthusiasm for dynamic symmetry caught the attention
of their art instructor. She, too, began to study and to realize that
geometry plays a role in painting. The total effect was most bene-
ficial. Many other students in art studied mathematics because
of the applications that were possible. Many students of mathe-
matics studied art because they saw it as a field that might pro-
vide them with a lasting cultural interest. Both areas of work
learned a new respect for one another's efforts.

Many writers believe that mathematics students should use a
library more than they do. In order to stimulate use of the library
by mathematics students, each sti:dent in each grade was required
to read at least one book per semester that was related to mathe-
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matics. Since this requirement was soon followed by a similar
requirement by other departments besides English and social
studies—-where normally much library research is done, some
plan had to be devised to prevent overloading students with work.
After discussion of several proposed plans, it was agreed that the
English department would prepare booklists for each grade level
that would incorporate the recommendations of all departments.
Students could choose books from these lists. In order to secure a
proper balance of reading of various sorts of books, the English
teachers would urge their students to select books from many
areas. A student could use the same book, for example one deal-
ing with mathematics, for both his English class and his mathe-
matics class.

In addition, the English department suggested that it would
include in its spelling lists technical terms from all areas, as well
as the names of the instructors. Every geometry teacher knows
how difficult it is to secure correct spelling of words like “vertical”’
and "‘angle” in plane geometry. Mathematics teachers enthusi-
astically indorsed the suggestion of the English teachers. On the
score of correct spelling of teachers’ names, it can be said that
it is disconcerting to find that a student has been a member of
one’s class for a whole year and still cannot spell correctly his
teacher’'s name.

Teachers observed that students had a better understanding
of the relationships that existed between areas of study. There was
more insight into the social setting of the development of mathe-
matics and science. Students came to understand that literature,
politics, mathematics, and science were related to a total pattern
of activity in a period of time. The history of mathematics became
part of the understanding of living. With the additional help of
the English teachers on spelling, not so much time had to be spent
on this aspect of mathematics teaching. As more and more of the
faculty -were drawn into this work, there grew in the school an
insight into the problems of reading and spelling that before had
been in possession of the English teachers only. Both teachers and
students benefited from the booklists that were arrived at co-
operatively.

In order to attack an objective of education, sometimes called
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the development of the disposition to use reflective thinking, an-
other school faculty procecded as follows: Under the leadership
of the head of the science department a group was formed that
consisted of two mathematies teachers, a social studies teacher,
an English teacher, and a language teacher. This group met to
discuss their readings, the implications for classroom work, and
their classroom successes or failures. From the many outlines
of the steps in reflective thinking that had been published, the
committee worked out a synthesis and an elaboration of the steps.
The elaboration of the steps in reflective thinking was intended to
give teachers some idea of the concepts to be developed. Many
faculty meetings were devoted to a discussion of the committee's
work. There was enthusiastic support of its findings from =ome
teachers; others were indifferent, because they did not =ee a direct
connection between their teaching and reflective thinking,

On the junior high-school level it was decided to present oppor-
tunities for students to exercise reflective thinking. Teachers
would guide the learning process in such a way that the steps in
reflective thinking could be followed, but there would be no effort
made to make students conscious of the method. In mathematics,
science, and social studies elasses, there was observed outstanding
suceess of the program. English and language teachers reported
ti-at there was little opportunity in their classes for presenting
good problem situations. But as teachers’ experience grew it was
found that they became more sensitive to the possibilities for
reflective thinking in their areas and, hence, provided more op-
portunity for students to develop their ability to think clearly. The
concerted effort. made by the faculty to teach for this school-wide
objective of education led to observable increase in students’
attention to consideration of proof on their level.

For senior high-school students, the steps in reflective thinking
were made explicit. Because of their greater maturity, these stu-
dents considered much more complex problems than the junior
high-school students. However, there were greater handicaps to
overcome in that the courses students were taking tended to be
more formal. It was more difficult for teachers of senior high-school
students to learn a new method of teaching, to present subject
matter material in such a way that a problem situation existed
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in the classroom. The better work was done in science classes,
with mathematics classes following along as best they could. It
was observed that during the years when there was most coopera-
tion in the teaching for reflective thinking (war service scattered
the o-iginal faculty and the necessities of war activities required
the attention of the remainder), there were more science students
engaged in original investigations and many of these used their
knowledz~ of mathematics to help develop their science projects.

The opinion of the faculty was that a disposition to use re-
flective thinking could be fostered in students. Individual teachers
contributed anecdote after anecdote to support this point of view.
But, it was also the consensus that teachers needed to hold their
attention firmly on a major objective like reflective thinking if
the proper method of teaching for it were to be used in a class-
room. The particular emphasis given to one or another phase of
reflective thinking did not make so much difference as the method
of teaching used. At every opportunity teachers had to be careful
to provide an opportunity for students to explore a problem and
to avoid explaining the generalization that would solve the
problem.

One of the most clear-cut examples of transfer was contributed
by Helen M. Walker, Professor of Education, Teachers College,
Columbia University. The anecdote is the result of a happy co-
incidence from an effort to relate her teaching of mathematics to
the teaching of English of a colleague, Mrs. Louise Anderson
MacDonald, who taught for many years in Pennsylvania State
Teachers College, Indiana, Pennsylvania. Professor Walker re-
lates the anecdote as follows:

It was one of those incidents which could not have been planned and
which came to light only through an unusual coincidence. I was teaching
mathematics in the Oread Trainjng School of Kansas University in
Lawrence and Mrs. Louise Anderson MacDonald held 4 similar position
in the Department of English. We arranged for her to visit sume of the
mathematics classes in order that she might see what were the difficulties
encountered by her pupils in oral exposition. I have no idea what partic-
ular geometry problem we were studying on this occasion but, I am sure
that it was one for which the general theorem had not been stated. Let
us suppose we had started with the simple problem of knowing that in
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a triangle ABC, angle 4 equals angle B, and that the class had been ex-
ploring to see what other properties of the triangle could be deduced
from this known fact. The conversation probably went something like
this:

Teacher: *'Can you tell us now what it is you have found out about the
triangle?”’

Pupil:  “‘Yes, I started out knowing that angle A and angle B were
equal and I have found out that whenever that is so, line A(’
must be equal to line BC.”

Teacher: ““That statement is entirely correct but is rather limited in
usefulness. If you want to make use of that same information
tomorrow or at some later time, you will need to have it stated
in a more general form without reference to the purticular
letters used to name the triangle.”

Then after some prodding, either this pupil or the class achieved the
general statement of the theorem. There was nothing unusual atout this
class session and no one concerned would ever have remembered it ex-
cept that a few weeks later Mrs. MacDonald asked a student in an
English class what was the point of Silas Marner. The student replied:
“Silas was accused of taking some money which he rea'ly had not stolen
so he ran away. It didn’t do him any good, though.” T .en to her delight,
one of the girls who had been n the geometry class Mrs. MacDonald
visited, remarked: “That is true enough but it isn’t very useful. If you
want to make use of that same idea again in another situation, you ought
to generalize it. You might say something like this: When one is accused
of a crime which he has not committed, it is quite useless to try to escape
by running away.”
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8.  Problem-Solving in Mathematics

KeNNETH B. HENDERSON AND
RoBERT E. PINGRY

THE present chapter on problem-solving in mathematics is
written on thc assumption that mathematics teachers should
understand the basic theory of problem-solving which is derived
from research in the subject and also see clearly the implications
of this theory for methods and procedure in the classroom. Both
are necessary. Theory apart from the implications and conse-
quences is largely sterile. Methods and procedures apart from a
conceptual framework become little more than a bag of tricks.
Accordingly, the chapter can be considered as divided into two
parts. The first part discusses the theory of the process or group
of processes of problem-solving. The second part discusses the
implications for classroom procedure. It s hoped this chapter
will prove helpful to teachers as they try to help their students not
only solve particular problems, but also improve generally in their
techniques of solving problems.

WHAT IS A PROBLEM?

One concept of problem, which is a very common one, is that
of a question proposed for an answer or solution. It is this con-
cept that the teacher has in mind when he says to his mathematics
class, “Your assignment for tomorrow is to work problems one to
ten on page 164.” The question which may b either explicit or
implicit in each problem is, “What is the answer?”

The concept of a problem as a question is the one we have in
mind when we speak of educational nroblems like teaching prob-
lem-solving, teaching for transfer, maintaining discipline, pro-
viding adequate educational guidance. In these examples the
question is implied. It might be phrased as “How can I .. e
or “How can we.,.?"”

A second concept of a problem still considers the existence of a
question to be necessary, but unlike the first concept, existence

228
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of the question is not regarded as sufficient. The additional con-
ditions pertain to the individual who is considering the question.
What may be a problem for one individual may not be a problem
for another. A problem for a particular individual today may not
be a problem for him tomorrow. -

How a person solves a problem. It has been mentioned that a
necessary condition for a problem to exist for a particular in-
dividual is the existence of a question. To identify other necessary
conditions, it is desirable to analyze the psychological process of
problem-solving; that is, how a person goes about solving a
problem. :

The first identifiable part of the process of solving a problem is
the on-going, sustaining activity of the individual. If we were to
probe into the causes of this behavior, we would always find a
more or less rationalized goal or an unresolved psychosomatic
tension present. It is this goal or tension that causes and directs
the individual's behavior. A student, for example, decides to do
his mathematics assignment. He finds a place to work, takes a
sheet of paper, and begins to work the assigned exercises. This
student has a goal in mind. He wants to complete his assigned
work.

The behavjor of an individual may also be caused by a less
clearly defined goal. To use the student again as an example, he
completes the assignment and has some time on his hands. He
listens to the radio a while, finds he has read all his comic books,
looks out of the window, calls a friend on the telephone—all in an
attempt to relieve his feelings of boredom. He is under the im-
pact of a tension. but he has not clearly defined the goal which
will resolve this tension.

It is the difference between the given situation and the desired
situation (goal) that evokes, directs, and sustains the individual’s
behavior. Other factors being equal, the clearer the individual is
about his goal, the stronger is his will-to-do or motivation. A
vague feeling of uneasiness is not conducive to behavior which
will remove this feeling. A consciously held and clearly defined
goal, on the other hand, helps the individual select and organize
behavior 2o that there is greater likelihood of the goals being
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reached. Attainment of the goal by the individual is satisfying.
Tensions are released, the individual's ego is enhaneed, and he feels
better.

The second identifiable part of the process of problem-solving
consists of a blocking of the behavior normally employed by the
individual in attaining his goal. The blocking has to be of such a
nature that well-established habits cannot immediately go into
action to circumvent or remove it. Suppose a girl is considering
the problem, “A recipe for making four dozen cookies calls for 1
cup sugar, 14 cup sweet milk, 1{ teaspoon baking soda, and 2
cups flour. How much of each ingredient shall I use if I want to
make two dozen cookies?”’ If she immediately takes one-half of
each amount, there really has been no blocking. But suppose she
does not know what one-half of one-half and one-half of one-fourth
are. Blocking has now occurred, and she has become aware of a
“problem” in the sense of a question to be answered. .

The third step in problem-solving is now ushered in. (This is
assuming the student continues to ac* in terms of his original
goal. Should he decide to abandon the assignment, then he has
changed his goal. There is no blocking and hence no problem.)
The student begins to think, and to figure out ways of removing
the bloclc and thereby to attain his goal.

This analysis of the process of problem-solving allows us to
identify the necessary conditions for the existence of a problem-
for-a-particular-individual:

1. The individual has a clearly defined goal of which he is con-
sciously aware and whose attainment he desires.

2. Blocking of the path toward the goal occurs, and the in-
dividual’s fixed patterns of behavior or habitual responses are not
sufficient for removing the block.

3. Deliberation takes place. The individua: becomes aware of
the problem, defines it more or less clearly, idenfifies various
possible hypotheses (solutions), and tests these for feasibility.

Implications for the meaning of a prodlem. The second concept
of “prohlem’ discussed here holds that when these three necessary
conditions are met, a problem exists for the particular individual.
It can be seen that this concept differs from the former one. Every
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question that ix proposed for solution is not a problem. As Cron-
bach (7:34) points out, *‘. . .it is not posing the question that
makes the problem, but the person’s accepting it as something he
must try to solve.” Furthermore, a question such as “What is
the value of z in the equation az + by = ¢?” is no problem to
someonc who understands algebra so well he operates only on the
basix of habit in solving the equation. If there is no discrimination
among alternative courses of action, no problem exists for the
particudar individual. The question, however, might be a problem
to a student who understands how to solve numerical equations
but has never solved a literal equation. Such a student cannot
depend upon a fixed habit of solving equations. He will be suc-
cessful when as the result of thinking he is able to identify the
general principles involved and apply them correctly.

It is not a question of which concept is the correct one; i.e.,
problems existing independent of persons who might face them,
or problems as only existing relative to the persons who face them.
It is rather o uestion of which is more useful for a certain pur-
pose. The second concept of a problem appears to be the more
useful concep. in most educational contexts. It is the one accepted
in the present chapter.

Are tertbook ‘“problems’ problems? Textbook ‘‘prublems’” may
be defined as all kinds of pre-formulated “problems’’ whether they
appear in textbooks or are prepared and presented by the teachers
in review exercises or tests, To simplify matters it will be assumed
that students can understand the ‘‘problems.” Of course, if the
students are of low mentality, or do not know what the mathe-
matical symbols mean, or see no relationships whatsoever, the
“problems” have no chance of becoming problems. They remain
enigmas for those particular students.

Whether textbook ‘“‘problems’ are problems can be determined
by examining them in terms of the three necessary conditions
stated in the previous section. When this is done, the only con-
clusion is that it all depends on the student’s reaction. If he accepts
the “problem™ as his own (that is, if his ego becomes involved),
then the solution of the ‘“‘problem’’ becomes his goal. In this case
the textbock “problemi” has met the first condition for a problem
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It is important to note that it really makes no difference whether
the student poses the ‘‘problem” (question) for himself or whether
the teacher or textbook poses it. The crucial factor is the extent
to which the student’s ego becomes involved in the problem. Some
educators seem to believe that a ‘“problem” is a préblem only if
the student formulates it for himself with little or no help from
the teacher. Such a position is hard to defend even on theoretical
grounds. It remains to be proven that a mathematics teacher who
is highly enthusiastic, has an exciting personality, and is a student
of psychology, cannot involve students in more problems than
can a teacher who waits for the spirit to move the students. The
main reason that so many textbook ‘problems’ never become
problems for the students is that the teacher does not make much
effort to challenge the student. As Bakst (1:9) says, “A properly
formulated challenge will, by and large, rarely go unanswered.”
There are possibilities in pre-formulated “problems.” Whether
they are realized depends to a great extent upon the teacher.

But assuming that a student makes the solution of the ‘“prob-
lem” his goal, there is still the possibility that the “problem’’ may
be easy for him. The solution may be merely a matter of grinding
out the answer. Agdin it depends on the student. There are prob-
ably students in every mathematics class for whom only the first
few “problems” in an assignment really are problems. These
students are sufficiently gifted that they rapidly discover prin-
ciples which serve to remove the problem-nature of the last “prob-
lems” in the assignment. Thare are probably also stucdents for
whom every ‘“problem” in the assignment is a problem; some
problems are so effective in setting up blockings that the student
is unable to eliminate them and solve the problems. In short,
what is one student’s problem is another student's exercise, and
a third student s frustration.

In the foregoing discussion, no distinction was made between
so-called verhal “‘problems” and ordinary exercises. This was be-
cause such a distinction is of no particular value in light of the
postulated conditions for the existence of a problem. Verbal “prob-
lems’” and exercises differ in nature, kind of abilities demanded,
and difficulty. But one may be no more or less a problem for a
student than the other. It all depends on the student’s orientation
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THE IMPORTANCE OF PROBLEM-SOLVING

If life were of such a constant nature that there were only a
few chores to do and they were done over and over in exactly the
same way, the case for knowing how to solve problems would
nnt be so compelling. All one would have to do would be to lesrn
how to do the few jobs at the outset. From then on he could rely
on memory and habit. Fortunately—or unfortunately depending
upon one's point of view—life is not simple and unchanging.
Rather it is changing so rapidly that about all we can predict is
that things will be different in the future. In such a world the
ability to adjust and to solve one’s problems is of paramount
importance.

‘The case for teaching students how to formulate and solve
problems involving quantitative thinking is abundantly clear.
Come graduation and/or employment, they will have to be able
to solve the problems posed for them in their advanced education
or in the job they hold. To be able to do vhis is the pay-off of their
education. Because most, if not all, mathematics teachers hold
this position, they expend considerable effort in teaching their
students how to solve problems in the field of mathematies. There
are few, if any, kinds of instruction that potentially have more
vaiue.

Should mathematics courses contain more problems? From what
we know about learning, there is only one way students can learn
to solve problems-—by solving problems and studying the process.
This means that students will have to be faced with problems.
Perhaps one uf the reasons some teachers have done so badly in
teaching problem-solving is that they have confronted their stu-
dents with or helped them formulate few real problems. This may
not be the only reason, however. Unless students study the process
of solving problems as an end in itself there is scant likelihood that
they will learn the generalizations which will enable them to
transfer their ability to solve problems to new problems as they
arise. Woodruff emphasizes the importance of studying the prob-
lem-solving process directly when he states (28: 301):

Furthermore, in face of what is known about the relative absence of
transfer of training in most school subjects, it is the height of folly to




234 THE LEARNING OF MATHEMATICS

expect students to develop problem-solving skill as an inciden*ul learning
unless considerable time and attention is devoted directly to it, in which
case it ceases to be incidental. It is fer more likely that something about
civic affairs will be learned in a unit ou problem-solving, thau that
problem-solving skill will be developed in the typical unit on civic
affairs.

Before the process can be studied effectively, the mathematics
course must contain many problems that fulfill the necessary
conditions already identified. It is not a question of either using
pre-formulated ‘‘problems” or using “life problems.” Both have
their place. However, mathematics teachers have been inclined
to ignore the latter. These are the problems that emerge from
social situations, industrial activities or the personal life of the
students and whose solution requires a substantial amount of
quantitative thinking. Hartung (12) cites some of the salient
characteristics of these problems: (a) They have no definite ques-
tion, but rather the question(s) have to be formulated at the
outset; (b} The necessary data are not given, but rather have to
be collected and evaluated; (¢) Analysis and interpretation are
much more conmplicated; and (4) A definite answer often is not
possible; verification is possible only by actual try-out.

It is much more difficult tv find problems of this kind. They
probably will not be too satisfactory if in a textbook, for they
depend to a large extent upon unique factors in the school in
which they are studied. Yet, if such problems do not find a place
in the mathematics courses which lend themselves to their in-
clusion, it is not likely that students will become competent in
solving them. The evidence on transfer of training does not
hold out much hope.

The function of verbal “problems” and cxcrcises. If the teacher
selects verbal problems carefully <o as to be at the student's
level, and ii he can get the students to identify themselves with
these problems, then the verbal *“‘problems” become real prob-
lems. They are probably as useful for teaching problem-solving
(though not problem discovery, definition, and formulation) as if
they had not been pre-formulated. Once the student’s attention
ix directud to the process they emploved in solving the problems
and they understand it, the verbal problems provide the practice
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material on which the students can apply the principles of prob-
lem-solving which they have learned. The function of these prob-
lems ax practice material ix the same as that of any practice
material. It has heen clearly stated by Brownell and Hendrickson
13:102): - Provision of an abundance of repetitive practice assures
learners opportunity to discover their own learning aids (if they
want them) and to develop confidence in their ability to react
quickly and accurately upon demand.”

With the exception of the syntactical form, the chief difterence
hetween exercises and verbal “‘problems™ lies in their intended
use. Exe. cises, such as those dealing with the fundamental opera-
tions, exponents, radicals, the binomial theorem, and derivatives,
are for the purpose of teaching certain mathematical concepts
and generalizations. Verbal problems are for the purpose of teach-
ing the generalizations relative to the process or method of prob-
lem-solving. These have no necessary relation to a particular
kind of mathematics problem; the problem-solving process is es-
sentially the same for all problems. The study of the problem-
solving proces=s is the real justification, rather than the utility of
the particular problem, for selecting such problems as those based
on time-rate-distance, work, mixtures, coins, and business deals.

Even though the primary function of exercises is to give mean-
ing to and provide practice .n1 applving mathematical generaliza-
tions and concepts, there is no reason why theyv cannot be used
for the =ame purpose as verbal ‘‘problems’; namely, to provide
practice in applying the generalizations which the students have
learned about problem-solving. To use exercises for this purpose
would require only a =<hift in attention. Moreover, using exercises
for thix purpose would result in broadening the meaning (ref-
erents) of the generalizations dealing with the method of solving
problems. Fxamples showing how exercises may he used will
appear later in the chapter.

In summary. both the exercises and verbal *“‘problems’ which
appear in practieally every mathematics textbook and are used
by practically every mathematics teacher have the same function
relative to problem-solving. The fact that the verbal “problems”
are a==ociated with problem-solving rather than exercises may be
due largely to the fact that few teachers realize the different uses
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to which exercises can be put. It remains to be proven by research
whether exercises or verbal problems are the more effective in
teaching problem-solving.

ANALYSES OF PROBLEM-SOLVING

As Dewey defines reflective thinking, there is little difference
between this and problem-solving. Hence, his analysis of reflective
thinking can be taken as an analysis of the act of solving a prob-
lem. According to Dewey there are five steps (8: 107-116).

1. Some inhibition of direct action resulting in conscious awareness
of a “forked-road situation.”

2. An intellectualization of the felt difficulty leading to the definition
of the problem.

3. “The identification of various hypotheses . . . to initiate and guide
observation and other operations in collection of factual maierial.”

4. Elaboration of each of the hypotheses by reasoning and the testing
of the hypotheses.

5. Acting on the basis of the particular hypothesis selected in step
four, thereby providing the ultimate test.

This idealized analysis describes how a person ought to think
were he an automaton governed only by logic. It does not describe
the sequence of a real person’s thinking. Dewey, himself, states
that people’s thinking does not ordinarily follow this particular
sequence. Studies of how scme of our most creative thinkers think
show that, if there is a logical pattern, we are not able to discern
what it is. In spite of all this, Dewey’s analysis is useful in pin-
pointing stages in the deliberative process.

Johnson (14) gives a slightly different analysis. He identifies
three processes or groups of processes which, he says, regularly
occur during problem-solving: (a) “Orientation to the problem”;
(b) “Producing relevant material, an elaborative function”; and
(¢) “Judging, a critical function.” (14: 202)

Johnson's analysis is oriented more to the psychological proc-
esses associated with problem-solving. It is easier to subsume the
psychological concepts which have resulted from experimental
research on problem-solving under the first two of the three
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groups of processes Johnson identifies than it is under one or more
of Dewey's steps. But when problem-solving in mathematics is
considered, Dewey’s fourth and fifth steps—namely, elaboration
of each of the hypotheses by reasoning and the testirg of the
hypotheses, and acting on the basis of the particular hypothesis
selected —appear to be more fruitful in a conceptual framework
than Johnson's third process: judging. This is largely because
judging is less a problem (though it still is necessary) in an objec-
tive xcience like mathematics than it is in fields like sociology,
political science, or religion, and in the large realm which we call
the day-to-day business of living. Since the present chapter tends
to be limited to problem-solving in mathematics, Johnson’s third
process has been replace by one labeled ‘‘testing hypotheses.”

The general conceptual framework which has been accepted for
consideration in this chapter, the pre-solution period of problem-
solving is:

1. Orientation to the problem

2. Producing relevant thought material

3. Testing hypotheses.

The subsequent discussion is organized in terms of these proe-
esses or groups of processes. These processes are not clearly de-
lineated one from the other. There is considerable over-lapping
and interaction as Johnson, “imself, indicates. “Problem-solving
begins with the initial orientation and ends with the closing judg-
ment, but between these bounds almost arything can happen, in
any cequence” (14: 203).

Orienting to the problem. Johnson defines orientation in this
context as ‘‘the process by which the organism grasps the material
of thought and keeps it available for deliberation” (14: 204). This
process or group of processes is, therefore, an encompassing one
and includes the other two: producing the material of thought
and testing hypotheses.

An individual’s orientation to a problem depends in part on
his physical and mental condition. A student who has a violent
headache, one who is grossly undernourished, or one who has
been up until 2 A.M. can hardly be expected to be effective in
orienting himself to classroom problems. A student whose dog
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has just been killed or one who is keyed up for the football game
after school also will probably be ineffective.

An individual’s orientation to a problem depends also on what
the problem nieans to him; that is, whether he understands the
words and symbols in the problem and their relationship to each
other. This orientacion depends upon how the problem is related
to consciously-held motives, and how it affects such ego-needs
as the need for success, approval, belonging, and security. He
is aware of the first two of these; i.e., the language of the problem
and the problem’s relation to his motives, but is largely unaware
of the third.

It is postulated that meaning is a continuous variable whose
range is the open interval zero to infinity. This means that mean-
ing is not an “either-you-have-it-or-you-do-not” proposition, but
rather a matter of degree. Furthermore, it means that every
problem has some meaning for an individual.

To illustrate the different meanings a “problen)” may have, let
us imagine we are watching a group of students attack a problem
in their mathematics assignment. To Bob the problem means a
short delay until he can get back to his comic book. Hence, his
goal is to get an answer—not necessarily the right one—which
he can use to convince himself that he has completed the assign-
ment. Then he can get to that comic book. To Harriet the problem
means a chance to get the attention of the boys in the class and
show up the other girls. Hence, her goal is to solve the problem
in such a *neat” way as to receive the admiration of the boys
or the teacher. To Frank the nroblem means another threat to
his self-esteem; all mathematics problems are. Frank just cannot
take failure; he has set a level of aspiration that is so inflexible
that it cannot be tempered by his varying aptitudes. Hence,
Frank’s only recourse is not to attempt the problem. Otherwise,
he might fail. To Tom the problem means almost nothing. Words
like per cent, discount, and net price have no referents for him.
Unlike Frank, however, Tom does not let a little thing like a
mathematics problem bother him. Both he and his teacher are
used to his saying “no” when asked whether he was able to do the
problems in the assignment. To Shirley the problem means “a
kind of problem I had better learn to solve if I expect to hold a
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job in merchandising.” She understands the words in the problem
and starts to find the answer and aleo tries to memorize how
problems of that kind can be solved.

Here we have five students each facing a “problem.” Because
of their different motivations, the *‘problem’ means something
different to each one. Hence each one’s material of thought and
plans of action will be different. Many teachers are unaware of
all this. Perhaps Cronbach’s admonition (7: 35) “. . . the motives
which the pupil brings to the mathematics assignment are rarely
related to the problem itself,” if remembered will be of con-
siderable help to teachers as they work with the students.

Clarification of the problem by the individual is a process which
affects his orientation. This is not a step or process that is clearly
distinguished from a prior or subsequent step. In a sense it is a
continuous process. Each of the five students described above
clarified the problem to some extent as he faced it. Each knew, for
example, that it involved mathematics, that he probably would
have to perform one or more mather. ‘icul operations, and that
the answer would probably be expr. -ed in numbers.

Further clarification of a problem depends on the student’s
understanding of the words and symbols used in the statement of
the problem. To the extent that he understands these, he is
hetter able to decide what must be done to obtain the answer.
In addition he must be able to identify what is given and what is
required. If the problem is not, pre-formulated, there is still the
matter of the perceptions and concepts which form the “‘given”
and some idea of the characteristics of an adequate solution.
Duncker (9: 35) points out the relationship of the given and the
solution: ““A solution always arises out of the demands made by
what is required on what is given.” With these two points in mind,
the student is better able to organize his efforts and secure a so-
lution.

Duncker (9) kas introduced a concept that is useful in under-
standing the psychological process of solving a problem. It is the
concept of a “search model.” The search model evolves as the
individual clarifies the problem. It bridges the gap between what
is given and what i~ required, and serves for a period of time to
direct or channel the individual's deliberation. To take a simple
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example, suppose you meet a friend who tells you something you
may forget if you do not make a note of it. You have no pen or
pencil. In this case you have something you want to remember—
you need a device to help you remember it. Your search model is
& mental construct—"‘something-to-write-with.” It is an abstrac-
tion obtained from the total situation which contains many ir-
relevant and confusing elements. But it provides the stimulus
that starts you thinking and acting, directs what you look for,
and tells you when you are through. It also determines the ““region
of search,” in this case your perceptual field.

To make a more involved problem, suppose a student is con-
sidering the problem: Each of two men travels 500 miles after
leaving a certain town at the same time. The first man travels 10
miles an hour faster than the second and so arrives 2.5 hours
earlier at his destination. How fast did each man travel? Assuming
that the student understands the problem and accepts it, his
search model—if he verbalizes it—may be ‘‘an equation that
relates the variables in the problem.”

His region of search consists of the mathematical concepts and
generalizations he has learned. These are appraised and selected
in terms of their usefulness in attaining the search model. If they
provide any hunches or suggestious for plans of procedure, the
plans are tested to see whether they provide a solution to the
problem. '

All these concepts, generalizations, and hypotheses, constitute
the thought material for the deliberative process. They will be
considered at greater length in the following section. The im-
portant idea at this point is that of a search model. Part of the
teacher’s work consists in helping students conceptualize func-
tional search models as they clarify problems. Faulty search
models undoubtedly are one of the chief causes of the errors
students make in solving problems.

Producing relevant thought material. The second aspect of prob-
lem-solving being considered is producing relevant thought ma-
terial. Such material consists of perceptions obtained directly and
immediately from the existing situation, concepts, and generaliza-
tions. The latter may either be recalled or obtained from someone
else during the process of solving the problem. Whether percep-
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tions or concepts and generalizations predominate depends on the
nature of the problem. Spatial perception probably plays a larger
role in the problems associated with intuitive and demor strative
geometry, numerical trigonometry, and analytic geometry than
it does in the problems associated with arithmetic, algebra, cal-
culus and higher analysis, at least as these subjects are ordinarily
taught.

Mathematicians are well aware of the role played by concepts
and generalizations in the deliberative process in problem-solving.
It is these abstractions which makes it possible to restructure or
reorganize past experience and bring it to bear on the problem at
hand. There is no substitute for an understanding of relationships
manifested by the possession of concepts and generalizations. Few
teachers would disagree with this.

e production and retention of thought material is dependent
= the individual’s “span of apprehension,” sometimes called *‘im-
mediate memory span.” The individual must be able to remember
what the “given’’ is and what he is expected to find as he continues
to work on the problem. He must also be able to select from his
past learning whatever is relevant to the problem.

The span of apprehensicn has two dimensions: extent and dura-
tion. These vary from individual to individual. Some people can
readily recall tacts, principles, concepts, definitions, theorems. etc.
The extent and duration of their span of apprehension is con-
siderable. Others, for one reason or another, have poor memories
and have difficulty in making use of their previous learning. Some
even have difficulty in grasping all the relationships in the problem
or in remembering the unsuccessful things they have done in trying
to solve the problem.

The concise symbolism in mathematics is of great aid in in-
creasing one’s span of apprehension. By symbolizing the concepts
and relationships of a problem, these can be Cealt with as entities
and kept immediately available for a study of their relations with
each other. Hypotheses can be readily tested, and new insights
obtained as the symbols are manipulated.

A particularly useful concept in considering the production of
thought material is that of “set.” A person is said to have a ‘“‘set”
toward a problem when, because of past experience, he is pre-
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disposed to a particular search model, hypothesis, or plan of action
and steadfastly maintains this predisposition. Suppose a class is
studying how to find what per cent one number is of another,
and is given only exercises which yield a per cent less than 100.
Some students may decide that the first step in finding the answer
is always to divide the smaller number by the larger. 'These
students probably will develop a set toward such problems and
mechanically apply this procedure to all problems involving find-
ing a per cent.

Though a set is not necessarily an obstacle to problem-solving,
the term as ordinarily used in accounts of research or explana-
tions of the theory of problem-solving has a negative tone. It
carried connotations of rigidity, inflexibility, blocking of the re-
organizatior. of experience and the restructuring of a configuration,
and a mechanized state of mind.

Some of the most convincing research on “sets’ has been don-
by Luchins. In one experiment he gave his subjects a group of
seven problems involving finding a stipulated volume of fluid by
manipulating three containers. All seven problems were solved
by the formula a — b —2¢. For example, if the subjects had a ten-
quart measure full of liquid and two empty measures, one holding
five quarts and the other two quarts, and were required to obtain
exactly one quart, they would fill the five-quart measure and the
two-quart measure twice. This would leave one quart in the ten-
quart measure. The formula was not known by the subjects.

The problems were solved at first by the process of approxima-
tion and correction, to use Melton's phrasing. The first problems
required more time, but the last problems were solved forth-
rightly indicating learning. Then five problems similar in nature
at first glance were given the subjects. But all these were simipler,
and could be solved by either « - ¢ or ¢ + ¢. The “set’ the
subjects had attained toward the problem from their success with
the initial ~even problems pre-disposed all of them to go through
the longer « — b — 2¢ process. Moreover, they persisted in this
even though it failed to provide a solution. A second group of
subjects not given the first group of problems designed to induce
the *=et” did not manifest a *‘set'’ on the test group of five
problems.
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Luchins used the name “Einstellung’ for this kind of ‘‘set.”
It ix defined as “the set which immediately predisposes an or-
ganism to one type of motor or conscious act (15: 3).” Under the
impact of an Einstellung, a person does not look at a problem on
its own merits, but tries mechanically to employ a previously
learned method. Further conclusions of Luchins were: (a) the
greater the success on the practice set, the greater was the force
of the Einstellung; (b) all age groups were affected ; and (c) educa-
tion, as measured by the number of years of schooling and 1Q,
had no significant effect in reducing the Einstellung. Luchins found
from analogous experiments using a geometry theorem that the
conclusions held. Reid (24) came to the same conclusions using a
different paradigm.

In another connection Luchins and a collaborator said (16: 286):

They [the students] were accustomed to the use of isolated drill in
arithmetic, wherein in order to ‘“learn” a method or formula they prac-
ticed it in a series of similar problems—a situation quite similar to our
experimental setup. They were accustomed to being taught a method
and then practicing it; to have to discover procedures was not only quite
foreign to them in arithmetic but also in most school subjects. It seems
to us that the methods of teaching to which they had been subjected
tended to develop, not adaptive responses, but fixations, so that a child
might know methods and formulas and yet not know where to apply
them or how to determine what method best suited a particular problem.
Our schools may be concentrating so much on having the child master
the habits, that the habhits are mastering the child.

In the present context of a discussion of producing thought
material, the relevance of an Einstellung is that such a set ma-
terially affects the search model, narrows the range of search,
inhibits the perception of certain relationships, and blocks certain
hypotheses. The result of this is that not all relevant thought
material is made available.

Hadamard (10) suggests utilizing an ‘“incubation period” as
one way of breaking a set toward a problem. One lays the problem
aside and forgets it. The ensuing incubation period is a period of
no conscious work of the mind. However, the subconscious mind
(Hadamard postulates the existence of such an aspect of mind)
is at work and often insight or illumination occurs. Many people




244 THE LEARNING OF MATHEMATICS

have had the experience of a solution to a problem popping into
the mind without any apparent reason. Some have had insights
occur during sleep. Poincare (22: 387-388) tells of an interesting
experience with problem solving:

Just at this time I left Caen, where I was living, to go on 4 geological
excursion under the auspices of the school of mines. The changes of
travel made me forget my mathematical work. Having reached Cou-
tances, we entered an omnibus to go some place or other. At the moment
when I put my foot on the step the idea came to me, without anything
in my former thoughts seeming to have paved the way for it, t'at the
transformations I have used to define the Fuchsian functions were identi-
cal with those of the non-Eucli'~an geometry. I did not verify the idea;
I should not have had time, as upon taking my seat in the omnibus, I
went on with a conversation already commenced, but I felt a perfect
certainty. On my return to Caen, for conscience’ sake, I verified the re-
sult at my leisure.

Kekule’s idea of the carbon ring for describing the molecular
structure of benzene came suddenly when the six carbon atoms
appeared to be dancing and then joined hands and formed a ring.

Hadamard held a forgetting hypothesis to account for flashes
of insight during the incybation period. The mind gets rid of false
leads and hampering assumptions, and approaches the problem
less structured by the set induced by these. Poincaré (22) held this
same hypothesis. Helmholtz however, believed the explanation
lay in the absence of nervous fatigue. (See 29: 818.) With a re-
freshed mind, ideas can more easily be brought into relation
with each other. Whatever hypothesis is accepted, an incubation
period is useful in helping break an unproductive set.

Forming and testing hypotheses. A hypothesis, to use Dewey’s
phrase (8), is an idea that suddenly pops into mind suggesting
how a problem may be solved. A student who is contemplating
how to factor 4n? — a* — 2ab — b? suddenly thinks that the
expression may be the difference of two squares even though it is
not exactly lixe a? — b® which he is used to. This idea or hypothesis
represents an insight—a perception of a relationship or set of
relationships not previously seen. Though occurring spontane-
ously, it has its source in the student’s past experience. What it
amounts to is a reorganization or restructuring of experience.
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Whether a hypothesis is effective or ineffective in solving a
problem can be determined either by actually testing it out or by
elaborating its consequences and implications in an attempt to
uncover any error in fact or inconsistency with tested knowledge.
In the student’s case, his hypothesis was an opportune one. By
acting on it he could solve the problem. Not all hypotheses
“‘work.” Those that do not “work’’ have to be abandoned and the
search continued for one that leads the way out of the difficulty.

The broader and deeper is the individual’s knowledge and
understanding of the subject at hand, the more readily will he
form hypotheses. This is assuming that he has no emotional block
on the problem or has not developed an Einstellung of one kind
or another. One of the obvious differences between a student
who solves problems readily and one who does not is that the
better student has many ideas concerning what might work. The
poor student is rather helpless after his one or two hypotheses
prove ineffective. The better student is able to conceptualize
readily because he has a greater background of understanding.

It is significant that knowledge and understanding were identi-
fied as determinants of hypotheses. Knowledge, in the sense of
remembering a large number of facts, does not necessarily guaran-
tee fruitful hypotheses. This is amply borne out by experience.

Thorndike (26: 201f) believes there are two reasons for the fact
that acquiring knowledge and being able to apply it when appro-
priate are different abilities. An individual may have an aptitude
for the former and not for the latter. Also the manner in which
the knowledge is acquired has a bearing on how readily it can be
used. Knowledge acquired largely by memorization, by the “pour-
ing-in"’ process, and without many relationships being established
with the individual’s existing knowledge has low transferability.
Knowledge which becomes understanding by virtue of teaching
which fosters learning by discovery, which deliberately establishes
relationships, and which aims at broad concepts and generaliza-
tions has higher transferability. The ability to transfer one'’s
knowledge and understanding—to find a meaning in a situation—
facilitates the formation of hypotheses.

We need to know much more than we do about the psychological
process of forming hypotheses. There is room for much experimen-
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tation. We do krow, however, from experimental_studies that
giving the students a pattern of “steps” to follow does not sig-
nificantly help them solve real problems. In fact, Hanna (11)
found that when students were left to form their own hypotheses,
their success in solving arithmetic problems was not significantly
less than that of students who were taught more or less formalized
procedures. Until more evidence is forthcoming, teachers will
probably not go astray by emphasizing relationships, helping
students organize their knowledge, and providing an abundance
of opportunities whereby students apply what they have learned.
Such teaching, from what we know now, facilitates the formation
of hypotheses.

The search model determines to a considerable extent the hy-
potheses that are formed. As had be:n explained above, the
search model, whether it is a mental picture or a verbalized or
unverbalized statement, describes Jhe key which will unlock the
problem. In one sense it is a hypothesis, for it represents an in-
ference or guess concerning how to move from the given to the
required solution. But it is very general and needs analysis and
elaboration. This process of analysis and elaboration gives rise
to the hypotheses concerning how the search model can be at-
tained.

Take the case of a pilot of a private airplane who finds that the
distance from St. Louis to Chicago on a certain map is 16.1 inches.

: . . 1
He knows the ropresentative fraction of the map is 1,000,000, but
is not sure how t« find the distance in miles between the two cities.
His search model is: “a way of relating the distance on the map
and the representative fraction.” This gives rise to the hypothesis
that he can set up some kind of proportion, assuming he knows
the meaning of representative fraction.

Once a hypothesis occurs the next step is testing the hypothesis.
In mathematics this is done by deducing its implications. The
quantitative magnitudes are symbolized, «nd the symbols manip-
ulated by following the rules of mathematics and logic. If this
procedure does not result in the solution of the problem, the hy-
pothesis is abandoned and another sought. A student has a hunch
that he can solve the equation 3¢ = 10 for 2 by taking the zth



PROBLEM-SOLVING IN MATHEMATICS 247

root of both sides. He applies the appropriate principles and finds
that his hvpothesis is fruitless.

Sometimes u different form of deduction is used. A student is
considering & common denominator of 37 and 23. The number 12
oceurs to him as a possible answer. He reasons that if 12 is a
common denominator, then it will be divisible by both 4 and 3.
He verifies this. Since a common denominator will be divisible
by both denominators, 12 must be a common denominator.

Checking the answer obtained in solving an equation is another
example of thir *if-then” reasoning. The student reasons, or
should reason, that if his answer is correct, then it should check
when substituted for the unknown(s) in the original equation.
He performs this check and verifies or does not verify his pre-
diction.

This form of testing is sometimes called prediction and verifica-
tion. The individual accepts the hypothesis conditionally. He uses
“if-then” thinking to predict what will follow. He then ascertains
the existence or non-existence of the predictions. If they are veri-
fied, the hypothesis is accepted as being the answer to the problem.
The necessary assumption should be noted; namely, that the
predictions can occur only if the hypothesis is true. Should this
assumption be false, the method of testing an hypothesis by pre-
diction is not valid.

HOW MATHEMATICS TEACHERS CAN HELP STUDENTS IMPROVE IN
PROBLEM-SOLVING

How can mathematics teachers help their students improve in
problem-solving ability?

In the previous sections of this chapter it has been shown that
problem-solving is a very complex process. In fact, psychologists
find it difficult to dist'nguish between problem-solving and learn-
ing generally. From this point of view there is a sense in which
this entire Yearbook, rather than just this ci.apter concerns prob-
lem-solving. Motivation, attitudes, transfer of training, drill, con-
cept formation, language, and logic, are all aspects of problem-
solving. A teacher who is seeking to improve problem-solving
ability must necessarily give proper emphasis to each of these
aspects. A program of instruction, however, that involves these
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necessary phases of learning is not sufficient. It is important that
specific experiences designed to foster problem-solving abilities be
provided in the program of instruction.

Some people are endowed with native abilities which enable
them to solve problems better than others. However, it is possible
to help each individual gain certain abilities and attitudes that
will help him be a better problem solver than he would be without
these. In the next section of this chapter, techniques and exper-
iences matheniatics teachers can use to foster problem-solving
ability will be discussed. These techniques and experiences will
be discussed under the same heads previously used; namely,
orienting to the problem, producing relevant thought material,
and forming and testing hypotheses.

Helping Students Become Oriented to Problems

A teacher can help students become oriented to problems by teaching
them the meaning of a problem. Every mathematics teacher has
had students who did not want to concentrate and reflect on prob-
lems. These students will read through a verbal problem in the
textbook once and will then, without reflecting, raise their hand
and state, “I don’t understand the problem,” or “I can't solve
this problem.”” Teachers frequently attribute this reaction to lazi-
ness when the difficulty may be that the student does not under-
stand what a problem is. May not all the student’s past exper-
iences with drill exercises have led him to generalize that problems
should be worked without deliberatjon? He may think one should
be able to read a problem and immediately know the answer.

The teacher needs to help this student learn the meaning of a
problem. The student needs to learn that a problem is a situation
for which one does not have a ready solution. He needs to learn
that he is supposed to have difficulty with a problem, he is sup-
posed to have to deliberate. The problem, if he accepts it as a
problem, should make him work; if it does not, then it is not a
problem for him.

For the student who does not understand the meaning of a
problem the teacher may say: “John, you are not supposed to
know how to work that problem. You are supposed to figure out
a way to work it. If vou have trouble, that’s what you shoulc. nave.
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Read the problem several times and draw some diagrams if neces-
sary. Think for several minutes on it before you ask fur help.”

A mathematics teacher is a psychology teacher. In a sense a
mathematics teacher is a psychology teacher teaching the psy-
chology of problem-solving. If students are to improve in problem-
solving ability, then the teacher must give the students some
guidance in problem-solving processes.

It is important that the students not only know what a problem
is, and what some of the aspects of the problem-solving processes
are, but why it is desirable to solve problems in school. The
teacher's task is two-fold concerning problem-solving. One aspect
is that of helping the students with the problems at hand. Tle
second aspect is that of helping the students understand the
problem-solving processes per <e.

Of course, before the teacher can teach problem-solving the
teacher must understand problem-solving. Mathematics teachers
need to be students of problem-solving processes as well as stu-
dents of mathematics. There is considerable evidence that many
mathematics teachers do not understand what rroblem-solving is;
or if they know, they do not have it as an cbjec:.ve of instruction.
One example of this is the manner in which many teachers teach
the verbal problems of the algebra course. Many of the problems
are catalogued into types such as ‘“mixture problems,” ‘“coin
problems,” “age problems,” and others. The teacher demonstrates
to the student how to solve the type, and a list of problems of the
type is then given to the students. The students do not experience
problem-solving. Rather, they experience practice of applying a
memorized technique.

In our culture some situations are faced so frequently that it is
desirable to memorize techniques for handling the situation. But
are “coin problems,” ‘“‘age problems,” and ‘“mixture problems,”
this important? Problems concerning coins, age, and mixtures
can be used to an advantage for improving problem-solving abil-
ity. When these problems are taught as memorized types and
solutions, however, the opportunity to improve problem-solving
ability is lost.

Orientation to problems depends wpon « well-organized body of
knowledge pertaining to the problem. One aspect of becoming ori-
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ented to a problem is to understand the place of the problem in
the total organization of the subject. Hence the teacher should
take time to provide experiences that will help the student realize
the large aspects of the subject as well as the small. Sometimes
teachers spend so much time on the details that the student loses
sight of the over-all organization. The student cannot see the
forest for the trees.

A lesson to help the student understand the historic develop-
ment of numbers would be very appropriate hefore starting a
unit on complex numbers. This lesson or lessons could deal with
the general development and extension of number systems, with
attention to their characteristics, and rules of operation. The
student would then understand complex numbers in a broader and
more meaningful setting.

Some geometry textbooks and teachers help the stuydent outline
and organize. For example, the students may be asked to list all
the ways they know for proving two angles equal. They may be
asked to make a schematic diagram showing the relationships
between the areas of polygons, or they may be asked to arrange
the members of the set: parallelogram, square, quadrilateral, rec-
tangle, in increasing order of generality.

The review lesson is also a device that enables the teacher to
focus the students’ attention on the over-all organization of the
subject. Review lessons should he planned to accomplish much
more than drill on memorizations. The review lesson should help
the student organize his past learning into logical and interrelated
outlines.

The mathemalics teacher is a reading teacher. Verbal problems in
textbooks have the additional difficulty over problems arising out
of the everyday experiences of the students in that the students
must first read a description of the situation before they can be
oriented to the problem. Frequently teachers state that the stu-
dents can’t work verbal problems because they can’t read. This
is a vague statement because the act of reading is very complex,
involving many skills and understandings. What does a teacher
mean when he says the student can’t read? Does this mean the
student can’t pronounce well, does not read smoothly, does not
understand the concepts, or what does it mean? Stating that a
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student can't read is making use of a catch-all word that may mean
any number of things.

Reading verbal problems in mathematics texts does require a
different reading technique than reading descriptive material or
fiction. The verbal problems are written in a brief, highly compact
style, using many technical words. The technical words have
to be meaningful to the student before he can understand the
problem.

Consider this problem:

A business man was forced into bankruptcy with assets of $15,800
and liabilities of $27,600. What per cent of his liabilities did he pay? One
creditor was owed $400. How much did this creditor receive?

What does it mean to state that a student can’t read this prob-
lem? It may mean that he does not have an understanding of
bankruptey procedure. If this is so, then one way the teacher can
help the student read the problem is to help him understand
bankruptcy procedure. The student’s distraction from being ori-
ented to the problem may also depend on the meaning of one word ;
for example, the word “liability’’ or the word “‘creditor” may cause
trouble. The mathematics teacher can help the student read the
problem by teaching the student the meanings of these words.

Teachers can also help the students read verbal problems by
suggestions such as these: “Mary, vou can’t read a verbal problem
like vou read a story. Read is slowly, reread it, read it a phrase
at a time. and draw a diagram if necessary to help you remember
the important items. Many times one word is extremely im-
portant. Do you know the meaning of each word?"”

Individual differences exist relative to problem-soiving. It was
pointed out in the previous section that a problem-for-a-particular
individual depends on the individual. For some a situation may
he « nroblem, for others it may be too difficult. A teacher who is
trying to help students become oriented to problems nmust recog-
nize these differences and try to provide each student with prob-
lem-solving experience at his level. Some students may sit in a
mathematics class all term without facing a challenging problem
situation. The assigned textbook problems are routine exercises
for them. Another chapter of this Yearbook deals with techniques
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for taking care of individual differences. It should be noted, how-
ever, that the recognition of and provision for individual dif-
ferences is important in teaching problem-solving,

The teacher can help the students become oriented to problems by
encouraging them to verbalize, diagram, dramatize, and construct
models. As a student becomes oriented to a problem he essentially
has formed a search model. One device a teacher can use to help
the student develop this search model is to ask him to tell in his
own words what he understands the problem to be. This accom-
plishes several things. The student, by this experience of telling,
is forced to organize his thoughts, and he may clarify certain as-
pects of the situation for himself, He also may realize his inability
to tell about certain aspects of the problem and thus be aware
of his weaknesses in understanding. The teacher also has an op-
portunity to diagnose the student’s difficulty. A definite attempt
should be made to have the students use their “own words" as
use of textbook terminology may not indicate understanding.

The student may make a statement similar to this, “I know this
...and what I want to do is this...” This verbal statement
defines the search model for the student. He has defined the
problem, he knows what he wants to accomplish, and is now
ready to fill in the gaps.

Diagramming a problem situation is also a very helpful ex-
perience to many students. The diagram may be a sketch of the
situation or it may be a symbolic diagram. The diagram helps in
clarifying relationships between details. The diagram also helps
the student keep the many facts and relationships of the problem
situation more immediately available than his memory could do.
Students should be encouragad to diagram many of the problems
they solve. The diagram can also serve as a check on the solution.

Most students in considering this problem should make some
diagram or sketch.

A ship is steaming toward Philadelphia at an average rate of 30 miles
per hour. It radios that a person is i!l aboard and must be picked up,
When a plane leaves Philadelphia for the ship, the ship is 270 miles away,
The plane averages 180 miles per hour. How long after it leaves Phila-
delphia does it reach the ship?
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The diagram may be just a crude sketoch to help the student
keep the facts in mind as in Figure 1.

Philadelphi 180 30
adf phia N 2%

Fia. 1

The diagram can be drawn to scale as in Figure 2, . 1d thus
give the student a check on his answer.

30
1 hour ghip

Philadelphia 270 miles 2 bours

180 o
Plane 1 hour

] !;uu

1 hour 17 minutes
Fia. 2

From this diagram the student can recognize that the plane
would meet the ship after about one hour and fifteen minutes.

The student may also want to use a graphic solution, such as
shown in Figure 3.

360
270

180 1

Distance from
Philadelphia

O
o

Hours

Fi1a. 8
Some problem situations, especially those problems in-taree
dimensions, become clear to the student if he will construct a
model. This model serves essentially the same purpose as the
diagram.
Another very useful device to help students become oriented to
a problem is to have them dramatize the situation. As the students
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play the roles of the characters in the problem situation, the prob-
lem situation takes on meaning. In an eighth-grade mathematics
class some students were interested in the problem concerning a
lost, pre-endorsed check, cashed by the finder, but on which
payment has been stopped by the maker. The students had
considerable difficulty in understanding this problem until they
played roles. One student acted the part of the check-maker. one
the loser, one the finder, one the store keeper who cashed the
check and one the banker. A check was written and a dramatiza-
tion of the situation carried out. Many of the students now urder-
stood the problem.

To help students improve in problem-solving ability the teacher
should try to create a climate in the class friendly to questions.
Students who are encouraged to ask questions, and feel free 10 do
so. raise their own problems. Many times students fail to ask
questions in class even when they have good questions hecause
they are fearful that the teacher will be ‘mpatient with them, or
that he will not want to take time away from the required work
to consider the question. In some classes students and teacher are
too ready to laugh at an elementary question a student may ask
in all seriousness. A teacher who wishes to build an atmosphere
in the class thit is sympathetic to questions must encourage stu-
dents to ask questions, give each question consideration, praise
students for asking auestions, and discourage laughing at question-
ashers.

The teacher should also ask many questions that require think-
ing and then give the students an opportunity to think. Teachers
frequently axk questions that require thought, but do not have
patience enough to let students think. A student is ealled on
immediately and expected to answer. Nome teachers seem to be
afraid of a period of silence following a question. ~

One teacher uxkx questions this way. *Now think about that
Don’t guess. Take ome time. I don't want any hands raised for o
while. Arter you have thought and can give evidence that vou
have, vou may answer.” Following thix admonition there is a
period of silence. Nometimes thix period of silence may be severnl
minutes long. How different this situation ix from the one in which

-
.

-
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the teacher asks a question, then immediately calls upon John.
While John is trying to get his thoughts together and give a
reasoned answer, the teacher becomes impatient and turns to
James. May not John arrive at the conclusion that in this case
one is not supposed to think, one is supposed to Anow?

If a thought-provoking atmosphere pervades the class, the
teacher may turn many of the students’ questions back to them
for their own consideration. If the teacher will encourage the stu-
dents to answer some of their own questions and allow time to
work on these questions, then essentially the students pose prob-
lems for themselves.

Helping the Students be More Productive of Thought Material

Productivity of solutions of problems depends upon several
factors. The principal factors are: the general intelligence level;
the background of experience, knowledge, skills, and understand-
ings; the emotions of the student; the motivations; and the field
in which the problem is set. So, if a teacher wants to help a student
improve in productivity of hypotheses leading to the solution of
problems, he must teach so as to give due consideration to each
of these factors.

The field in which a problem is set greatly affects the produc-
tivity. The time and place and the particular pattern of events
leading up to a problem make consid -able difference in the
productivity of hypotheses. Students in a plane geometry class
faced with the problem of determining whether or not two angles
are equal may search for two congruent triangles in which these
two angles correspond. At another time in -the course parallel
lines cut by a transversal, or opposite angles of a parallelogram
may be uppermost in their minds. The focus of attention upon
relationships in a problem is greatly affected by the particular
conditions present at the time the problem occurs.

The particular field of events surrounding a problem is some-
what within the control of the teacher. The manner in which the
teacher asks a question or the particular time chosen to present
a problem may greatly affect the students’ search °1odel. One
problem may be presented immediately following another problem
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in such a way that the first problem provides a hint concerning
the solution to the second.

One very useful technigue that the teacher can use and can en-
courage the students to use is the heuristic method. The teacher can
ask the student questions in such a way that the field will be
changed, the student’s focus of attention will be changed, or
some new element may be brought into the field. This new field
may now enable the student to arrive at a solution.

‘The reader should solve this problem. Construct a circle ¢
having a one-inch radius and construct two diameters AB and
C'D perpendicular to each other. Now select any point E on the
circle and construct EF parallel to D meeting AB at F and
EG L CD meeting CD at G. How long is line GF? The reader
may find it helpful to solve this problem (if it is a problem for
the reader) hefore reading the following paragraph.

A
E F

B

If the reader has experience similar to that of many mathematics
teachers to whom the writers have given this problem, the Pytha-
gorean theorem concerning triangle GOF appears in the field and
holds promise of a solution. Many students have worked a con-
siderable length of time on this problem without success because
they became fixed in their attack on the problem. The focus
of attention was the right triangle. The Pythagorean theorem is
such a powerful tool that it is reasonable to be diligent in trying
to make use of it. However, the able problem solver is one who is
able t. shift his attention. He realizes the dangers of rigidity and
trys to broaden his approach to the problem. The teacher is in a
good position to help the student learn something of the psy-
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chology of problem-solving and at the same time help the student
with this problem by a statement such as this. “When you are
having trouble with a problem look at it in a different manner
than you have been doing. You have been thinking about triangle
GOF, have you tried thinking about the quadrilateral EGOF?
Try it. Get in the habit of asking yourself questions about the
problem as you work on it.”

Polya, in his book, How to Solve It, strongly recommends a long
list of questions one should ask himself as he trys to solve a
problem. These are also good questions for a teacher to ask a
student. Some of the questions Polya suggests are (23: inside
cover):

1. “Have you seen it before? Or have you seen the same problem in
slightly different form?

2. Do you know a related problem? Do you know a theorem that
could be useful?

3. Look at the unknown! And try to think of a familiar problem hav-
ing the same or similar unknown.

4. Here is a problem related to yours and solved before. Could you
use it? Could you use its result? Could you use its method?
Should you introduce some auxiliary element in order to make its
use possible?

5. Could you restate the problem? Could you state it still differently?
Go back to definitions.

6. If you cannot solve the proposed problem, try to solve first some
related problem. Could you imagine a more accessible related
problem? A more general problem? A more special problem? An
analogous problem? Could you solve part of the problem? Keep
part of the condition; drop the other part; how far is the unknown
then determined; how can it vary? Could you derive something
useful .rom the data? Could you think of other data appropri-
ate to determine the unknown? Could you change the unknown or
the data, or both if necessary, so' that the new unknown and the
data are nearer to each other?

7. Did you use all the data? Did you use the whole co.dition? Have
you taken into account all essential notions involved in the prob-
lem?”

The re=ult of such a questioning by teacher or student of himself
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is a shifting of the field in which the problem is set or a shifting
of the focus of attention.

The teacher also controls the field of a problem by the manner
in which the question is asked or by the particular time the
teacher chooses to ask a question. The teacher may present a
problem immediately following another which gives the student a
useful suggestion of the method of solution of the immediate
problem.

Suppose the student is puzzling over the addition of two com-
mon fractions whose denominators are unlike. Rather than say,
“First find the lowest common denominator,” the teacher might
ask, “Why don’t you add the fractions just as they are?”’ When
the student explains why this cannot be done, the teacher might
say, “Then what will you have to do?” The questioning should
be provocative of thinking, forcing the student to justify his
answers,

Many times a teacher will work out a problem for the class or a
particular student. Or he will have some student put the solution
on the blackboard. Qver twenty yvears ago Westaway (27) argued
against such practices. His argument is still sound. To be sure, the
students see how to solve the problem. But as Westaway says
(27: 460), *“They (the students) are still ignorant as to the way in
which the teacher discovered how to solve the problem.” A better
practice is to ask a question which will direct the students’ at-
tention to a key relationship or hypothesis. If they are unable
to answer they should be told just enough to enable them to get
started. To tell them more destroys the feeling of achievement,
and encourages dependence on the teacher.

Sometimes all that 1s necessary to help a student break a ‘‘set”
towards a problem s to tell him not to persist in an unsuccessful
search model. Maier (18) found this successful in helping his sub-
jects avoid a ‘‘set’ which was unproductive of a solution. If
students learn this as a principle of procedure, the duration of a
“set”’ should be reduced and their productivity of hypothesis
increased.

Students should be adrised to abundon temporarily the attempt to
solve a problem on which they harve worked unsuccessfully for a long
time, and lo return {o it later. This provides for an incubation period
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during which perspective may be restored. Also, if the student
has become tired, a rest may be what is needed. When the problem
solver returns to the problem the rest or the shift of attention may
enable him to be successful.

Many examples can be cited of many fumous discoveries that
have come in a flash of insight that followed an incubation period
or rest period. Many proverbs are present in our culture that
encourage recess from working on a problem.

“Take counsel of your pillow.”

“If today will not, tomorrow may.”

“Sleep on it.”

Of course one doesn’t solve problems by sleeping, resting, and
laying the problems aside. This technique of the incubation period
only works after much deliberation and under conditions when
the problem solver is strongly motivated to arrive at a solution.

The technique of searching for an analogous problem is a very
useful technigue for a student to learn. A student faced with a prob-
lem in three dimensions may be guided by analogous situations
in two dimensions. For example, there are many similarities and
likenesses between the geometry of the sphere and the geometry
of the circle. Coolidge (6: 226) was impressed with this analogy
and stated, “The likeness between circles and spheres extends
beyond individual theorems to general methods of proof. Often
the procedure which is applicable in one case may be directly
transferred to the other.”

Polya (23: 38, 101) points out how a problem solver who is
concerned with the problem of finding the center of gravity of a
homogeneous tetrahedron, and the problem of finding the center
of a sphere circumscribed about a tetrahedron could be guided by
analogous situations in plane geometry.

Many teachers have long recognized the value of encouraging stu-
dents to start with the conclusion or the end result and work by analysis
to the given. Geometry teachers and textbook authors encourage
the students to reason analytically. The student should learn
that when he faces a situation for which he has no immediate
solution he can profitably direct his thinking by starting with the
‘““to prove” or ‘‘conclusion” and, saying to himself, “If I show
this I will first have to prove this. This in turn requires that
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I know...,"” until the given data and conclusion are linked
logically.

Students should be encouraged to use inductive procedures to help
them make discoveries and lead to conjectures concerning the problem
at hand. Several specific number relationships may lead the student
to discover a general relationship. Many drawings of geometric
configurations may lead the student to discover the essential
characteristics of a proof. Mathematics is a deductive system, but
induction certainly plays a great role in the discovery and creative
aspects of the subject.

Continually pointing out and stressing relationships will help stu-
dents form hypotheses. The fact that a student forms a hypothesis
concerning the solution to a problem indicates that he perceives
a relationship; e.g., “‘that follows from this,”” “this problem is
similar to the one I did yesterday,” “this is a case of ..."” “the
principle that appears to apply is...” “If I can find . .. then I
can solve the problem.” Hence the more a teacher stresses rela-
tionships, the better able the students will be to form hypotheses
in the subject studied.

Students shovld have experiences in which they have to identify and
define a problem, identify the varicbles and constants involved, make
assumptions which simplify the problem, collect and evaluate relevant
data, decide on the characteristics of a satisfactory solution, and
finally arrive at a solution which satisfies these characteristics. Prob-
lems which call for such abilities are rarely found in textbooks.
The author of a mathematics textbook writes a concise, well-
structured verbal problem which contains all the data and only
those data needed to solve the problem. These kinds of problems
serve a purpose, but a steady diet of these will not provide the
kind of training needed to solve the real problems in the various
occupations and in everyday life. Such problems do not come all
packaged and ready for immediate solution.

One way of initiating problems of the kind called for by this
principle is to begin with relatively unstructured questions such as,
What does your income have to he to afford to get married?
Is it cheaper to buy a house than to rent one? How ¢an vou save
money in buying? and What is the effect on the graph of the
quadratic function, az® 4+ bz + ¢, of varying the constants q,
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b, and c? Assuming that it is possible to interest st:dents in the
problem, the experiences mentioned above follow as normal con-
sequents.

Lund (17) describes a problem initiated by the question, “How
does air distance compare with highway distance?”’ The students
used W AC charts which they obtained from the U. 8. Coast and
Geodetic Survey, a set of U. S. A. highway maps, and ordinary
rulers. Before the main problem could be answered; such sub-
problems as selecting a representative sample, and collecting, pre-
senting, and organizing the data had to be solved. Though the
objective seemed to be to teach students some elementary prin-
ciples of statistics, the possibilities such a real problem offers for
simultaneously teaching problem-solving are readily apparent.

Meek and Zechiel (19) describe an insurance company planned
and operated by seventh-grade students. This gave rise to many
problems most, but not all, being quantitative in nature. Other
teachers have had similar success by organizing their classes into
companies which engage in retail selling.

Irland and Ensign (13) conducted an experiment on determining
automobile stopping distances which might serve as a joint project
between a mathematics class and a class in driver training. There
are many opportunities for originality and initiative in such a
project.

Miller (20) suggests a problem situation involving a pint of
water placed on a gas burner. Several functional relations may be
identified and studied; e.g.; the temperature and time with a high
and a low flame, and the time and amount of water remaining.

The project, “What does it cost to own and operate an auto-
mobile?"” was conducted by Montgomery (21). His class identified
the variables involved, collected data, made simplifying assump-
tions regarding some of the variables, and arrived at a cost per
mile for each of the first three years of the car’s life. Each student
selected a different car.

Many geometry teachers have encouraged students to formulate
their own problems by means of flexible models and diagrams (25).
By manipulating these models and by studying the flexible dia-
grams, students may intuitively believe a certain relationship is
true. The student then poses the question, “Is this relationship
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always true?”’ Careful investigation may show intuition was right
or it may show it was wrong. The student, however, has had the
experience of formulating and investigating his own problem.

These examples show what can be done in the way of presenting
relatively unstructured problems when the teacher is disposed to
do so. Without such experiences, students may not get a broad
understanding of problem-solving.

Textbook lists of problems should be devised so as to aid in reducing
mechanistic, rigid, formula-applying thinking on the part of the stu-
dents. Luchins (15) made several recommendations to teachers
who desire to help their students gain in problem-solving abilities.
He suggests that the teacher, after illustrating a method, should
not give a set of exercises all alike, but should intersperse problen.s
not solvable by the same procedure. As the result of a later ex-
periment, Luchins and Luchins (16: 293) recommend:

To be effective, problems which aim at conveying the importance of
discovering, selecting, evaluating, and discarding facts and hypotheses
in solving problems, should be introduced in all school subjects and
should not be treated as curiosities which must be heralded with a special
introduction, but should be freely intermingled with other more routine
problems. If they involve insufficient or additional hypotheses, these
should not be patterned as to number or kind. To be sure, as our experi-
ments indicate, the inclusion of such problems may make learning slower
and somewhat less efficient than drill procedures, but may also produce
less mechauical behavior and more productive thinking. Basically, it
revolves on whether our schools wish to develop mechanical efficiency
and a formula-applying attitude, conducive to associating a particular
method with a particular situation, or whether they aim to develop
individuals who have some capability in facing and coping with new
and changing problem situations.

Textbooks should contain problems that require the student to
be alert and imaginative in solving problems. The student should
have the experience of concluding that, under the given conditions,
a particular problem has no solution. Rather than problems all
solvable by the same technique, there should be some problems
that have insufficient data, and some with extraneous data. Some
would he absurd questions, and some would be solvable by hoth
long “strong-armed” methods and by short elegant methods.
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Recognition should be given to the student who solves a problem in
more than one way, and fo the student who is able to find a particularly
neat solution. Brownell (4: 439) suggested ‘“To be most fruitful,
practice in problem-solving should not consist of repeated exper-
iences in solving the same problems with the same techniques, but
should conxist in the solution of different problems by the same
techniques and in the application of different techniques to the
same problems. A problem is not necessarily ‘solved’ because the
correct response has been made.”

In many mathematies classes the student receives his grade
for the course on the basis of answers on homework and on tests.
May not some students generalize that the process is unimportant
just <o it gives a correct answer? Students are sometimes satisfied
with an incorrect process that results in a correct answer.

Students should become aware that the process of solution is
very important. Many problems in mathematics textbooks are
solvable by several different methods or devices. A student should
develop the habit of trving several solutions. This will help him
avoid the mechanizec approach of solving a problem by a formula-
applving, step-by-step procedure, as well as give the student a
good check of his answer. Teachers should give proper recognition
and reward to the student who does try several solutions or has
searched until he has found an interesting or neat solution. The
teacher =hould ask, “Who has been able to solve this problem
another wav>" “Which solution do you like best?”’ “John has a
very interesting and brief method of solving this problem. John,
will vou show us vour solution?” Proper reward may also be
given in the form of report card grades that include consideration
of processes as well as answers.

The teacher should develop an emotional climate in the classroom
which helps students concentrate on the problems they face. Some
teachers employ methods and stimulating devices which divert
students’ attention awayv from the problems at hand and toward
extrinsic rewards and incentives. The students may have a con-
<ciousness of their own inadequacies, or a consciousness of how
much they dislike the teacher. Relative to incentives, Luchins and
Luchins (161 observed that the children in the experiment were
not interested in the problem per se; only in the effect the problems
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would have on their marks, report cards, and whether the principal
would know of their performance. These effects were accentuated
under speed conditions. The authors conclude (16: 288), “We
wonder whether our schools with their stress on grades, their test
tensions, and competitive atmospheres, are not conducive to an
emotional, highly ego-involved approach toward problem-solving,
and consequently, whether they are not detrimental to produc-
tivity and flexibility in thinking.”

Unwholesome emotional tensions will very probably rest in the
classrooms of teachers who use fear as a motivating force; who
openly reject students who have difficulty and make mistakes:
who continually deflate students’ egos by sarcastic, snide, or dis-
paraging remarks; who make unfavorable comparisons of students
with their peers; who demand an inflexible standard from all
students; or who have no sense of humor and are nervous and
irritable. Students in such classrooms will almost certainly find it
harder to keep their minds on their work. It may be the dislike
for such methods may transfer to the subject and be generalized
to include all mathematics.

The principles to be followed in developing an emotional tone
in the classroom which does not distract or incense students are
rather well establisxiied. They can be found in most texts on mental
hygiene. Suffice it at this point to mention only a few. A patient
and sympathetic attitude will encourage students to try. This is
expecially true if a teacher does not reject students who cannot
measure up to others in solving problems, hut accepts them as
challenges to his own problem-solving ability-.

The old adage. “Nothing succeeds like suceess,”’ suggests that
teachers pace their students carefully; not frustrating and dis-
couraging them by continually setting tasks they cannot accon-
plish. but starting with things they can do and gradually increas-
ing the difficulty as they gain confidence. Praise, recognition, and
encouragement have long been known to relieve emotional ten-
sions. Finally, attention to the interpersonal relations of the mem-
bers of the class and to the regard they have for each other may
serve to diminizh feelings of hostility or fear in some of the stu-
dent=. When such feelings are present, it ix hard to give one's
full attention to solving a diffcult problem.
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Diagnosis of difficulty and remedial instruction are important.
The teacher can help a student become a better problem solver
by diagnosis of his problem-solving procedures and provision of
remedial instruction. Bloom» and Broder (2) conducted an in-
teresting and valuable study on the problemi-solving process of
college students which included a remedial program, the principal
aim of which was to foster general problem-solving ability. Stu-
dents first were asked to solve problems doing their thinking
aloud. A record was kept of the student's remarks as he =ought
a solution to his problem. Following this experience of solving
problems the students next analyzed their own problem-solving
methods and compared them to the methods used by their fellow
students. The results of this experiment are encouraging to a
teacher who desires to help his students improve in problen-
solving ability. The students in the experiment made significant
gains on problem-solving tests and expressed an increased con-
fidence in probleni-solving.

A mathematies teacher can watch the student as he works. Some
questions the teacher can keep in mind as he watches the student
work are: Does he read the problem carefully, rereading it if
necessary? Is he easily distracted? Doex he withdraw from the
problem and take refuge in daydreaming? oes he write his com-
putations all over the paper in a disorganized manner? Ioes he
check his answers? From all these questions and others the teacher
can formulate hypotheses concerning the student's difficulties.
These hypotheses can be tested by providing the remedial in-
struction necessary to remove the difficulties. The technique of
having the student work his problems aloud offers some hope in
helping the students.

Tcachers can help students improve in problem-solving abilities by
not requiring step-by-step procedures to be followed. At the arith-
metic level there has been considerable research in methods to
improve problem-solving ability in arithmetic by various step-by-
step procedures. Clark and Vincent (3) devised a plan known as
the graphical analysix method. Many textbook authors present
a more conventional plan which the student ix to follow step-by-
~tep such os: ) What i= given? (h) What is to be found? (¢) What
operation is to be used? 1) What is the answer? Another method.
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called the dependencies method, directs the student to follow
the plan of stating “I am to find -— ——, this depends upon
== =="" Other standard procedures for solving arithmetic word
problems have been advocated. Much research has been conducted
to find which method is superior. The findings have been con-
flicting and at present no step-by-step procedure for solving prob-
lems has been shown to be satisfactory for teaching to students.
For the students with agile minds, following a fixed sequence is a
handicap. For the slower students the sequence may cause them
to lose sight of the pattern of relationships involved in the prob-
lern. Beyond reading the problem and finding out what is required.,
there appears to be no tixed sequence of steps.

The teacher should not teach students a specific miethod which
can be used only for a particular problem --or worse, has to be
unlearned when other problems are studied. Teaching the stu-
dents to fill in a box or table in a mechanical way may help them
get an answer to a particular problem but it will not help them
solve other problems.

Helping Students Improve in Testing H ypotheses

The aspects of problem-solving used in this chapter, (a) orienta-
tion, (b) productivity, und (c) testing hypotheses probably do not
oceur in one, two, three order, but are interwoven into a fabrice
of thinking in which it is difficult to discern these aspects. How-
ever, for the purpose of thinking about problem-solving it is
helpful to discuss these aspects. After one has formed a hypothesis,
or simultaneously with the formation, the hypothesis must he
tested. Our intuition may be of tremendous help in torming the
hypothesis or conjecture, but it may also lead us to erroneous
conclusions. The principal =kills and understandings needed for
testing hypotheses are those of induetive and deductive thinking.
A large number of data gathering and analyzing skills and under-
standings nsually associuted with inductive processes are nceded.
Understandings and abilities in the use of if-then thinking are
needed. Knowledge of logical fallacies is necessary. The student
needs to form the habit of suspending judgment until he has
systematically studied the many aspects of the problem. He needx

wp
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to form the generalization that hasty conclusions are frequently
wrong.

The technique of lesting hypotheses by prediction and verificalion
should be explained to students. This will provide them an under-
standing of part of the process of solving a problem and will give
direction to their efforts.

One of the best ways of illustrating this technique is in the
solution of an equation. The “answer’ obtained is really a pre-
diction that this answer is a root. When the answer is checked it
i verified as a root, or as not a root. Another instance of prediction
and verification is the estimation of an answer to a problem before
it is worked and the subsequent comparison of the answer ob-
tained with the estimation.

Students should be taught that 1t is better to form wrong hypotheses
provided these are lested and the errors discovered than it 1s to be
without a hypothesis. Sometimes students get the idea that unsue-
cessful attempts disclose their ignorance. It may be helpful to
remind these students of Thomas Edison's reply when he was
asked if he were not discouraged after working unsuccessfully so
long on a certain invention. Edison is supposed to have replied
that he was not at all discouraged as he now knew many things
that would not work. If the student remembers all of the things
that did not work as he tried them, this in itself should be helpful
in arriving at something that will work.

Instead of telling a student that the hypothesis he 18 contemplating
is not valid, let the student find out for himself. For example, suppose
a student tries to solve the equation v/ + z = 10 by squaring
each side as the first operation. Instead of telling him he should
first subtract z from each side, let him test his own hypothesis.
This builds independence. This also keeps the student’s attention
on the problem where it belongs rather than on the teacher. The
student will have the valuable experience of testing a hypothesis
that does not work.

As students test hypotheses, some of them ill-conceived, the teacher
must be patient and objective lest the student test the hypotheses not by
trying them out bu! rather by watching the teacher’s reactions. Many
teachers have been discouraged by a student who after reading a
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verbal problem hegins to guess as to the operation to be performed.
“Subtract?' the student will ask Past experience may have taught
the student thut if he watches the teacher's reactions he can find
a clue ax to whicl operation to perform. The teacher can help the
student gain better problem-solving experience by giving a non-
committal answer such as “What do vou think?" or “Perhaps"
or “How do you know?" If the teacher gives such answers in-
dependent of whether the answer is VYex or no, the student will
not get hix needed clue from the teacher's reaction. In class dix-
cussion also, a student’s correct answer may ve challenged by other
~tudents and much learning takes place if the teacher ix not too
ready to inform the class that the answer is correct. In general, the
student <houlid be foreed whenever possible to test his hypothesis
by himsell.

SUMMARY

Mathematies teacher: believe that the ability of a student to
solve mathematies problems is dependent upon how deep his
undesstanding of mathematies is. The student 's ability to solve
problems alzo depends upon the studen- s understandings, atti-
tudes. and =kills concerning proolen-solving processes. This im-
plies that the teacher of nathematios nust understand mathe-
maties as well s the nsychologioal processes of problem-solving
to be of help to the student. T'o provide such an nunderstanding of
the latter, thix chapter attemptec o set forth a conceptual frame-
work of problem-solving and poivt aat some of the implications
of thix for classroom procedure . The hope is that this will afford
a teacher fruitful hvpotlieses cone vaing his own efforts to teach
stiudents the set ol understandings, attitudes, and skills conducive
to solving problems
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9. Provisions for Individual Differences

Rorranp R. SmitH

Vast bodies of data testify to the fact that individual pupils
of the same age vary widely in respect to a large number of traits.
They vary not only in abilities but also interests and needs. There
are wide differences in their rates of learning and the degrees of
retention. They differ also in such things as emotional, cultural,
and economic backgrounds. Even without this experimental data
we would know that the differences exist. We do not know so well
how to deal with them.

Brief Huistorical Statement. The fact that individuals vary is
so obvious that mention of it goes back many centuries but it has
been st::died experimentally and subjected to quantitative meas-
urement only in relatively recent years. Plato said that every
individual should perform those tasks for which he was best
qualified by nature. Aristotle recognized individual differences
and the influence of education upon them. The Romans and the
educators of the Renaissance also saw that not every one has
outstanding gifts or outstanding ability. Rousseau said that each
child has his own cast of mind in accordance with which he must
be directed. But Francis Galton was the first, about one hundred
vears ago, to undertake a systematic and statistical study of in-
dividual differences.

The first traits considered were comparatively simple ones—
memory for nonsense syllables, keenness of eyesight and hearing,
color vision. perception of pitch and weight, sensibility to pain,
and reaction time to various things. The results of these investi-
gations contributed little to our understanding of the higher and
more complex mental processes. Extensive and intensive scientific
psychological study of the more complex processes began with
the Binet-Simon intelligence scale of 1905.

Binet's greatest contribution was the idea that an individual
should be studied through the higher functions rather than the
simple sensory-motor processes. The tests he used were admin-
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istered to individuals. They were followed in 1908 by one revision
and again in 1915 by the Stanford revision. In 1916 came tests
given to groups—the Army Alpha and Beta intelligence tests—
produced by a group of psychologists. Since then hardly any
aspect of human variability has gone unexplored. In addition to
general intelligence tests there have been tests of personality,
of the emotions, of aptitude for general and specific undertakings,
and achievement tests in various subject matter fields. The fact
of variation in all traits is so well established that it is taken for
granted as a problem to be faced by any one who has anything
to do with education.

Variation in the Same Grade. The new teacher has a background
of these findings of experimental psychology in his or her training
for teaching. But he does not have to be in the classroom long to
find out for himself the fact of variability. Inthe first grade
Johnny can count to 20 but does not know what he is doing.
Mary can get only as far as 10, but she can tell whether she has
four pieces of paper or seven. She knows when one group is larger
than another. Fred is quite intelligent but he is o shy the teacher
has a hard job drawing him out. On the other hand, Jim wants
to talk all the time whether he has anything to say or not. Jenny
ix very proud because she has learned even before she came to
school that four apples and three apples are seven apples and two
pencils from ten pencils are eight pencils. Hazel thinks she can
count but she savs, *‘One, two, three, nine, hundred, million.”
And =0 it goes no matter in what grade it is, whether it is in the
elementary or secondary school. And the farther along in school
it is, the greater the variability. It ix not unusual, for example, to
find a range of several vears among pupils designated as sixth-
grade pupils.

A typical situation is seen in the following table showing grade
standing in arithmetic of all the pupils in the ninth grades of
various schools of a city where the total school population is
approximately 21,000, The results were obtained by giving a
well known standardized achievement test. In this particular
school system, the median grade equivalent for each of the schools
i< above the expected grade equivalent. But note that there are
great variations from the median. For the whole grade, 9 per cent.
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were found to be retarded 1-10 months, 10 per cent 11-20 months,
and 3 per cent 21-30 months. In each school, the number retarded
up to two vears is large enough to provide for in special groupings;
the number retarded from 21-30 months is r - large enough to
think of in this way. There are many retarded. On the other
hand, the table shows large numbers advanced bevond the ex-
peeted norm. The most important fact to note for our purposes
ix the =pread of many yvears of arithmetic achievement in the one
grade. .\ similar table made for the third grade would show about
the same thing, except that the range would be less.

Whether a school be large or small, teachers face the problem
of what to do to adjust their teaching to pupils whose abilities
and achievements cover a wide range. In a democracy the ob-
jective 1z to give every pupil the best education of which he ix
capable.

Method of Adjusting to Individual Differences. In most school
svstemis it is agreed that there <hall be little if any differentiation
of topics in the tirst eight grades. There is a core of subject matter
needed by all normal citizens. Differentiation here will therefore
be not in topics but in levels f learning and depth and scope.
The amount of conerete background in any topic can be varied.
Rates of teaching can be varied. The extent of a topie can be
varied. Each pupil will be expected to do work only up to his own
capacity to learn. He should master what he does at his own level
of maturity so that he can do things at that level efficiently
and ean have a sense of having achieved success,

Teaching so ax to make variations in depth and scope i made
axier by ability grouping. When thix is done for a elass as a whole,
it is an administrative matter and the responsibility of the prin-
cipal. But there is no such thing as homogeneous grouping. If
there are only =ix pupils in a group, no matter how carefully they
are selected, there will be six ditferent individuals, with six dif-
ferent sets of abilities, interests, and needs. No matter how ef-
ficlently a group i= organized. the teacher will have to do a good
deal of individual diagnosing and teach accordingly.

Beginning wnah the ninth grade. there can be variation in
courses ax weil as in depth and scope. There will always be a place
for the so-called sequential courses of academie mathematies
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algebra, geometry, solid geometry, and trigonometry. But there
is an increasing number of prpils in our secondary schools who
cannot profit by these more or less professional courses. For
these pupils, courses in general mathematics have been provided.
These courses can be made much more flexible than the academic
courses and so can be fitted to a wide range of interests, abilities,
and needs.

Diagnostic Testing for Remedial Work. One form which pro-
vision for individual differences takes is diagnostic testing with
subsequent attention to errors made by individuals. This is done
on the assumption that the study of mathematics is the acquiring
of particular understandings and skills. This is only narrowly
true. Occasionally a child or a student may show particular weak-
nessex. He may be goed in general but make errors in subtraction
with borrowing. A little remedial work with that particular thing
may well be all he needs. He may have been absent from school
when some topic in algebra or geometry was presented and the
results of a diagnostic test will show his weaknesses there. The
student ix very likely aware of the weahness even before the test
is given. In general, however, errors in mathematics are not due
to this particular kind of thing where repairing by means of patch-
ing is effective. If a student is weak in one respect he is likely
to be weak all along the line. The real problem is to find out as
soon s possible on what level each one of the students can work
and teach accordingly. This chapter addresses itself to this point
of view.

Bright, Average, and Slow Children. Human beings are not
divided into tyvpes. There are continucus gradations from one
extreme to the other. As is well known, there is a concentration
about a central point with the frequency decreasing as the distance
from the central point increaxes. However, for the sake of analysis
of learning abilities it is well to think of three groups, the bright,
the average, and the slow. It should be understood that there is no
well defined line of demarcation between the groups.

Approximately 20 per cent to 25 per cent of the <chool popula-
tion at the upper end of the scale may be designated as bright
pupils. They have IQ's fror 110 up. They find abstract reasoning
much easier than do thos  Hwer in the scale. They do not need
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a prolonged period of conerete background. They can more asily
graxp several ways of doing a thing, compare them, and choose
the bext way. A rich associative background helps them with
anything they have to recall. Their interest lies in larger units
of work with greater returns rather than in short specific assign-
ments. They are eritical of their own work, They dislike a large
amount of routine. They have a longer attention span. Pupils
in this group can carry on a discussion for a considerable period
with interest,

At the other end of the scale there are 20 per cent to 25 per cent
of the pupils that belong to the slow learning group. With IQ's
from 70 to 90, their learning characteristies are different from
those described for the bright group even though different only
in degree. The difference can easily be seen if we take the same
lixt of characteristies and modify them. Theyv find abstract reason-
ing difficult rather than eaxy. They need a prolonged period of
conerete background instead of a short one and some of them never
leave the conerete level. They learn by simple mental processes
and need a large amount of drill and repetition. When theyv seem-
ingly learn beyond their ability to comprehend, the learning i
most often merely verbal memory. Rich associations tend to con-
fuse and bewilder rather than clarify. They are interested in short
time units and specific assignments. They have limited powers
of =elf eriticism. As one example of this, it is difficult to get them
to check even a routine example. They often do not know whether
they are right or wrong and seem to care less. Their attention span
is short. They tire easily.

in the middle, the members of the average group, 50 per cent
to 60 per cent of the total school population, have characteristics
between those of the bright and slow groups. They can think in
abstract terms provided they have been prepared for it by varied
conerete experiences, Properly directed they will cheek and eriti-
cize their own work. They enjoy a certain amount of routine but
need to have varied work to keep them interested.

The intelligent quotient is by no means an infallible criterion
for dividing children into these groups. There ure other charae-
teristics such as initiative and industry to be takes into account.
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Many pupils with mild physical defeets which may not have been
dizcovered do not achieve as nmiueh as their mental abilities would
make possible. Habits of work arising from past experience and
especially home hackground may put pupils into a higher or iower
class of achievement than their IQx would indicate. It is not
unusual for a boy with an IQ of 100 to do as well in a given subject
as a boy with an IQ of 115, At the same time it is not likely that
a boy whose IQ puts him in the slow group can compete on equal
terms with a boy in the superior group.

Whether a teacher has a selected group- - one made up entirely
of pupilsin one of these categories— or a heterogeneous group where
he hax to make his own selection, he should take account of the
characteristics that have been listed here. He should not deal
with slow pupils by the same methods he uses with the superior
pupils even if they are in the same class or even if he is developing
a topic with both groups at about the same time.

Slow learners, as has been indicated, need more repetition, more
conerete development, more trial and error experience, and simpler
reasoning. They need help with their reading and vocabulary.
They need more help in making generalizations. As a mutter of
fact, one means of differentiation is to let the better pupils do the
more ditticult work, make the generalizations, and suggest appli-
cations, while the slower pupils are listening. This is the way it
works in any heterogeneous group of adults. The slower profit
by the work of the more superior.

One problem that always rises when there are fast and slow
learners in the same class is what to do with the better pupils
while giving extra time to the slower ones. The usual answer is
“enrichment™ material which may mean different things to differ-
ent persons. It does not mean giving a xet of drill exercises to
the brighter students who do not need it. It does not necessarily
mean assigning pages of the textbook containing supplementary
material, although this is one good solution. It does mean taking
advantage of the fuet that these brighter pupils enjoy taking
unitz of work that are not routine in nature. Let them work on
group projectx that require study in the library or in supplemen-
tary hooks provided in the classroom by the teacher The origin
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of weights and measures, standard time, arithmetic puzzles, and
magic squares are some of the things that come to mind for pupils
of fifth- or sixth- grade level. When these groups are ready to make
a report. it can be made to advantage to the whole class.

Lereds of Loarning, When provision for individual differences
¥ mentioned, many of us are likely to think of ability grouping
= the busie remedy. Tt is not the basie remedy. Too often teachers
ke no - distinetion in teaching slow grou, s or bright groups.
Grouping 1% not the remedy when all groups are taught by the
sume methods, Unless teachers have the concept of various levels
of learning and can teach accordingly, grouping is of no great
value,

An illustration will show what is meant by the term levels of
learning. A child who ean find the sum of 5 apples and 3 apples
when the upples are present is working one level of learning.
Another who can find the sum of 5 apples and 3 apples by drawing
circlex is working on another level. A child who knows automati-
cally that 5 and 3 are 8 is working on still another level---this
tlwe—n a mature level.

The concept of levels of learning recognizes the fact that chil-
dren of various degrees of ability or maturity can learn to do the
e thing on several different levels from the simple concrete to
the more complex abstract. A good many teachers now in service
began teaching under a psyehology that demanded the teaching
of all processes on a mature level. “Teach a process in the way it
1% to be used.” was the slogan. A pupil's introduction to process
wus ax an adult would use it. A newer psychology has us accept
at first the crude attempts of the pupils and then refine the
attempts as the pupil gains more experience.

The methods of dealing with individua! differenees on the basis
of various levels of learning have received more attention in the
elementary school than in either the junior or senior secondary
school. For this reason, a large number of illustrations have
been tuken from this part of the school syster. Secondary-sehool
teachers, us well as elementarv-school teachers, will find a study
of these illustrations protitable and can adapt the methods to
their own problems.
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Suppose a teacher of an unselected group of third-grade
children i attempting to develop the first fundamental ideas of
division. Thix is the problem <he hax given. “Frank has 17 cents.
How many 3-cent stamps can he buy?” The members of this
claxs have had two vears' experience with numbers. They have
learned that they can solve problems by counting things and by
grouping things. Many of them know they can use counters such
as milk bottle tops in place of actual things. They have often
solved problems by drawing pictures or using <ymbols such as
small circles. Some of them can count by 2's and 3's. Now they
are all faced with a new problem. How should the teacher handle
the situation?

The teacher ~hould at tirst give no suggestions but watch to
see what ix being done. Some may xolve the problem by using
counters. Others mayv draw circles. Still others may count back
from 17, making & muark after every three numbers. It is possible
that a few of the children may know that five 3’s are 15 and six
3'x are I8 and so know almost automatically that the answer is 5.

If the members of the elass fail to respond readily, the teacher
mayv make suggestions on the various levels letting each child
choose the way that appeals to him. It is Letter to make brief
suggestions than it is to show methnds xtep by step. Over a period
of two or three dayvs, these are some of the ways the example can
he done.

1. Take 17 counters and place them in piles by 3’s. There will be
5 piles and 2 counters left over, xhowing that Frank can buy 5
mirbles and will have 2 cents left.

2. Draw 17 smadl eireles and mark them off by 3's.

3. Start counting backwards from 17. Say 17, 16, 15, and put
« mark on paper. Then =ay 14, 13, 12 and put another mark on
paper. And =o on.

4. Make a table ux follows:

No. of marbles 1 2 03 O T

?\—H. ,uf [NUIE 3 t) . 9 . ‘,) 1 ? _ ‘.)

5 =tart with 17, subtract 3. Subtruet 3 from the remainder,
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and 3 from the new remainder, and so on. You will subtract 3
five times and have 2 cents left over.

17

6

11 2
6 2
5 1
3 3
2

6. Buy 2 marbles at a time. Two marbles will cost 6 cents. You
can buy 2 and 2 and 1 and will have 2 cents left. (See box above).

7. Buy 4 marbles. Then you will have enough left to buy one
more.

8. Buy the largest number of marbles possible all at once.
Those who know the multiplication table of 3's can do the example
this way.

After a discussion of these various methods of doing the prob-
lem, another of similar nature should be given; for example,
“How many apples at 4 cents each can I buy for 25 cents?”

Now is the time to watch carefully to see what level each child
chooses. You may find some who can get the answer automatically.
Some will subtract 4’s. A good many are likely to do it objectively-.
Some will not have grasped the idea at all.

It isa good thing now to divide the class into groups. Make one
group of those who need help to do the example even objectively.
Make another group of those who can do it objectively, and
another of those who are doing it abstractly,

While you are working with the slowest group, let the members
of the other groups discuss their methods. There will be different
levels of learning even within the groups. In the second group
there will be various objective methods. Let the children decide
which is the quickest method. In the most mature group there
will be some who are subtracting 4's singly, some who are sub-
tracting various multiples of 4, and a few, perhaps, who are doing
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the whole thing at one stroke. Let the members of this group
agree upon the best method. Here will be a strong motivation
for learning the multiplication facts.

The teacher's responsibility is to help the slowest group to
learn how to do the example objectively and then as they learn
better how to subtract 4's, to do it by subtraction. They should
go on to still higher levels as and if they become ready. All the
children should have a chance to discuss the various methods
and choose the best method. Those on a lower level of learning
should not he forced to go higher but should be encouraged to do
=0 when they can.

This method of procedure is in marked contrast to the method
which does not let a pupil progress to a new topic until he has
grasped the preceding one from the mature point of view. This
method allows progress even though the level of learning is not a
mature one. This method does not keep a boy from learning what
is meant by division, or how to do simple exercises in division,
until he has mastered the multiplication facts. He can do division
by pictures. He can do it by subtraction. He may need to have a
multiplication table before him. At any rate he can progress.

We now take another topic illustrating teaching on wvarious
levels of learning, this time from the topic of fractions in the fifth
grade. Since the pattern of procedure is much the same as the one
given, we shall merely outline it.

Suppose it is desired to develop the topic of subtracting a frac-
tion from a whole number. The procedure might be as follows:

The first problem is a conerete one—*I have 6 feet of rope and
cut off half a foot. How much do I have left?”’ The pupils have no
mature method for doing this example. It has not been taught.
Ask for an answer found by any method at the pupils command.
If vou get answers, ask how the answers were found and discuss
the methods. If answers are not forthcoming suggest (a) counting
by halves—13, 1, 113, 214, —or (b) drawing 6 ci.~les and dividing
one of them into 2 equal parts. Crossing out one-half of one of
the circles will give the answer.

Now tryv a few other examples involving the subtraction of such
fractions as 1y, 34, 14. 24, 1§, 3§ and let your pupils find the
answers by their own methods. Discourage pencil computations.
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At this stage few if any pupils will need to bring o rope to class
and carry through the operation thus objectively. Most of them
will do it by drawing circles und dividing one of them into fourths,
thirds, or sixths, as the cuse may be.

“ == 5‘..
.‘!‘-‘ [ -.l_‘

Now suggest that these examples can be done without the use
of picturex. Put an example like the one above on the board. There
is just enough help here to permit the brighter ones in the class to
carry on. let the others continue objectively. Do not require
any pupil to do it abstractly until he ix ready to do it that
way. And when he does it abstraetly he should be asked to ex-
plain his work and to show the very obvious connection between
drawing six cireles and dividing one of them into fourths and the
fact that 6 = 54§,

This work has taken probably not more than twenty minutes.
An objective method has been shown for the class ax a whole and
understood by most of the pupils., The better students have
graduated quickly to an abstract method. They have assoviated
the objective and the abstract quickly,

Now, just as in the example of the teaching of division, it is
time to divide the elass into groups, helping the slow group to
see what it is all about, giving more practice te the middle group
and helping those in it to associate the stess in the abstract
method with the corresponding steps in the conerete.

‘The bright group, because superior ehildren ure helped by rieh
associations, may well "carn that this subtraction is only a speeial
caxe of a larger pattern of so-called borrowing. You can show the
following examples,

1. “From 8 yd. take 2 fi.” This is done by changing S vd. to
7 vd. 31t

2. “From 9 wk. take 6 da.” This ix done by changing 9 wk. to
% wk. 7 da.

3. “From N dimes take 6 conts”” This is done by changing S
dimes to 7 dimes 10 cents.
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4. “From N0 take 7.” This is done by changing the 8 tens to 7
tens 10 ones.

"The pattern is obvious, It is identical to the one that has been
used in subtracting a fraction from a whole number. This kind
of generalization is better done with bright pupils than with
pour pupils. Too much of this can be more confusing than helpful
to xlow pupils,

‘I'hese two illustrations have been taken from topics in the
elementary school. The same fundamental ideas apply to all
grades, in the secondary school as well as the elementary school.
The following illustration is taken from algebra.

Verbal Problems in Algebra. Most pupils have difficulty with
verbal problems. Some pupils have more difficulty than others.
Teachers find the pupils on many levels of attainment. Many
cannot read with comprehension. Others do not readily see the
relationships involved. There is o definite need for devcloping
the procedure in problem-solving objectively so that a distinction
may be made for different levels of wmaturity.

Objectivity in this cnse does not mean going back to the
handling of things as it does in the early years of the elementary
school. It means going back only to abstractions already well
established. Consider this problem for example.

“A colleetion of nickels, dimes, snd quarters amounts to $4.
There are 10 more nickels than dimes and 2 less quarters than
dimes. Find the number of each.”

It is assumed thut all members of the class can do the following
problem: *What is the total value of 12 dimes, 22 nickels, and 10
quarterse’’ It is assumed also that they can do this problem:
I have 10 more nickels than dines and 2 less quarters than dimes.
If 1 have 12 dimes, how many nickels and how many quarters do
I have?" Any pupil who cannot do these two problems, involving
arithmetic numbers only, has a poor chance of being successful in
algebra. This work with numerical relationships is a sufficient
huxix for objectivity.

When o class is first confrouted with the algebraic problem
stated above, the teachier shouid ask, “Suppose there are 12 dimes,
how many nickels and how many qyuarters would there be?”
This question forees reading with comprehension and shows the
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teucher those who need help in that direction. Pupils need to learn
that there ia a relationship given between the numbers. The next
qustion would be, “What is the total value of these coins?"
Tha final question is, **Is this the total given in the problem?"
It is not the right total, so we know that 12 dimes is not the rigit
number.,

Before going through this problem again with some othier as-
sumed answer, not 12, it is well for the teacher to go on to the
algebraic solution for the benefit of the brighter pupils who are
ready for it. The algebraic solution should be associated step by
step with the numerical work just finished. BrieHly the discussion
would be as follows.

“We know that, 12 dimes is not right, but we have discovered
and used all the relationships stated and assumed in the problem.
Instead of 12, let us use n. There are n dimes. How did you get
the 22 nickels in your previous work?” Answer: I added 10 to
the number of dimes.”" “What is the number of dimes in our
present analysis?” Answer: 0. “What is 10 added to n?”’ Answer:
“n o+ 10." “There are (n + 10) nickels. How did you get the
number 10 for the quarters in your previous work?" Answer: 'l
subtracted 2 from the number of dimes.” “There ure (n — 2)
quarters.” “How did you find the value of these eoins?'* Answer:
“I multiplied the number of dimes by 10, the number of nickels
by 5 und the number of quarters by 25." “What values do you
get for n dimes, (n + 10) nickels, and (0 = 2) quarters? Answer:
“10n cents, H(n + 10) cents, and 25(n — 2) cents.” “How did you
check before to see if 12 dimex was correct?” Answer: I found
the total value to see if it was $4. “You will do the same thing
here. What will you have when you say that the sum of the values
must be 842" A nswer: 100 + 5(n + 10) + 25(n - 2) = 400,

This is an exceedingly brief statement of the discussion. In
actual practice the reactions of the pupils would be taken into
account and the dizcussion would be less formal and better di-
rected.

You now have the members of vour class thinking on various
levels, Nome will be able to think in terms of an algebraic unknown.
others will still be quite confused. In hetween, there will be those
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who have begun to see what it is all ahout, but need nwich more
practice in discovering the relationghipr by means of an assumed
arithmetic answer. When you develop vour work on various levels,
you have a better chance of interesting a! the members of a
class. You avoid the hopeless confusion that viica besets the slow
pupil and you challenge the brighter pupils.

‘I'his matter of levels of learning is fundamental in providing
for individual differences whether the provision is made on an
individunl basis or in groups. Some pupils may reach a certain
level of development and stop there. They may have reached the
limitx of their ability. The difficulty, however, may be something
else. It may be xome emotional maladjustment or fauity teaching.
It is not wive for a teacher to assume that the limit of capacity
has been reached. It is not likely that any dull child will become a
genits, At the same time. theve is always hope that the right
surroundings, the right conditions, and a more adaptable form of
tenching muay o appeal as to raise o child beyond what his past
wecord would prediet.

Teachers should keep constantly in mind the fact that learning
involves the Jearner. Unless the learner can be guided to think,
feel. and act spproprintely in a given situation. it is not possible
fur him to learn what is intended. The teacher who attempts to
teuch always on the mature level, merely showing pupils examples
of work properly done with little or no attempt to accept and
develop the pupil's first crude methods, is not likely to find his
prpils interested enough to enter into the work wholeheartedly.
Mechaniea! deill on top of this kind of teaching is doomed to
failure. When pupils find things to do on their own level of learn-
ing. thev are most likelv to enter into the situation.

Differentiation in Depth and Seope. The mathematical program
for Grades T througk VIIT should be essentially the same for oll
normal pupils. There ix no question abhout this for Grades I
throngh V1. The same genoral statement applies to Grades VII
and VITL We need to make certain that the essentials for func-
tional eomvpetence are achieved by all who ean learn them and the
soventh and eighth grades are crucial vears in the attainment of
that objective. The pupils in these grades. however, cannot all
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learn the same amounts nor at the same rates. To take care of the
differences, there must be differentiation but it should be in depth
and scope not in topics. We have already dizcussed varying levels
of learning. Following is a brief discussion of differentiation in
depth and scope.

‘The term ‘“‘depth and scope” refers rot so much to levels of
learning as it does to graduation of subject matter within topics,
To be sure, some topics cannot be differentiated. The multiplica-
tion table, for instance, is the same for all pupils. However,
most topics can be differentiated. In fractions, all children should
understand the meaning and the processes of adding, subtracting,
multiplying and dividing even though it is done only on the
picture level. Almost all the cluldren can work with the simplest
kind of examples. The faster pupils should progress more rapidly
to more difticult examples and more difficult applications. In
decimals, too, the meaning and elementary skills should be de-
veloped in all four processes, but the extent to which any child
or class should go depends upon the ease with which they grasp
what is being done. In per cents let all the pupils have practice
in the meaning and work with the simplest examples of per cent -—
H0 per cent, 25 per cent, 3315 per cent, and so on--per cents that
can be treated as fractions. Those who ean should go on to work
with other per cents such as 36 per cent, 73!; per cent, 4.5 per
cent, 'y per cent.

Teaching by Wholes. Giving first a birds’ eve view of a whole
topic on a small seale ix an excellent means of providing for in-
dividual differences. In most seventh and cighth grades there are
several topies required for a vear's work. Ordinarily a tentative
time schedule is given ax a teachers' guide. But teachers, more
often than not. complain that thev need more time for teaching
each topie. They should try teaching the essential parts of a whole
topie in the first fow days assigned to that topie. In supericr
clisses this can be done in a very short time and the remaining
time left for the development of details and for enrichment. In
poorer classes thix preview of the whole will take longer. Whatever
time is left san be used for the important details that are left.
However, since the most essential parts of the topic were com-
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pleted early in the schedule, the teacher will feel no qualms of
conscience in progressing (o the next topic when it is time to do =0,

Following ix a brief report of thiee days' work in decimals
tanght from this point of view. Note that it begins with the mean-
ing uf decimals and goes through division by a decimal. It gives
the whole story but only on a small seale. Only tenths are dis-
cussed, not decimals in general.

For the first day:

1. .\ brief background of fractions, If a line ix divided into 2, 3,
4, or H equal parts what is one part called? Count by halves,
thirds, fourths,

2.\ line 2 fec: long with each foot divided into ten equal parts.
One part ix 1,2 of a foot. Count by tenths pointing to the cor-
rexponding marks on the scale:

oo 2o Mo Ly e e ey 00 2
3. Another way of writing tenths:

2

}'iO),{O)"‘lng)“'n )\
d, 02,000, LBy e, 1O

S99 18 )y s0 Ly and .5 have the same value. Point to the .5
mark on the line. This is 1§ inch.

4. For meaning. Read 2.3. Write it using a common fraction.
Are 3.4 pies as much as 334 pies? Where is 1.3 on the scale? How
does it compare with 1147 What does 2.5 mean to you? (213).

5. About how muech is 2.1 x 3.2? (It is about the same as
2 X 3.).4.3)16.2 is ubout how much? (About the same as 4)16.)
2.4 + 3.1 ix a little more than ?

All the work of this day was pointed toward meaning,

For the second day:

1. Review of first day’s work. Which is larger, 2.3 or 237 If
you had .3 pound of candy, how much less than a half pound would
vou have? When you see 12.5, what do you think of? (1214).
(‘ount from 7 to 8 by tenths and write the numbers using a
decimal point. C‘ount from 0 to 1 by tenths pointing to the cor-
responding marks on the scale. Count by tenths from 7.5 and write
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the numbers until you have written seven numbers. Between two
what whole numbers is 4.7?

2. Addition. Note how nuich easier it ix to work with decimals
than with fractions. Addition without earrving:

63, +3 14 43
5?7 5.‘{0 3.4
Addition with carryving:
34y 79 8990 N0
g 13+ 4110 4.7

3. Subtraction.

41y 7
4

{o 7.3
23¢ i

3
;"/0 4-7

—— | —

We can do this work jusy as if there were no decimal points and
then put the point in the correct place in the answer. Be sure to
get the points in a column.

4. For meaning. Give estimate only: 82{y X 5. Also 3.2 X &.

For the third day:

1. Written review. Write as decimals 23{p, }3, 713, Which ix
larger 4.8 or 327 Is 3 less than, equal {0, or greater than 3.0?
Is 4.7 more or less than 414? How much? Add 6.2 and 34; 5.7
and 6.8. Subtract 2.4 from 6.2. Subtract 3.7 from 5. Is 3.2 x 2.1
near to 1, 6, or 144? Is 16.3 + 2.1 near 4, 8§, 16, 50 or 144?

2. Multiplication. Estimate 314 X 4. Also 3.5 X 4. Find the
exact answer to 313 X 4. Multiply 3.5 by 4 paying no attention
to the Jecimal point. Place the decimal point in the answer ac-
cording to estimate. How do your two answers compar .?

Practice with several of like nature.

Then 12.2 X 12, placing the decimal point by estimate. Avoid
examples like 64 X .8 because of difficulty in estimating.

. Division. Assume the ability to multiply by 10 previously
taught. What is the quotient in each case?

2)8, 4)16, 8)32, 20)80
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(To develop the fact that multiplying the divisor and the dividend
oy the same number does not change the quotient.)

What is an approximate answer to 2.1)105 {50]. This is difficult
because the divisor is a decimal. By what could you multiply 2.1
to make it a whole number? [10] Then if you multiply the divi-
dend also by 10 the quotient will be the same as in the original
example. The examples become 21)1050.

Practice. The final idea i- thix: Never divide by a decimal.
Change it to a whole number.

To be sure, skills have not been developed in thix short time.
But the big ideas have all been presented. From now on the stu-
dents have enough background to proceed at their own rate. The
details will be more meaningful because they will be fitted into
the whole picture.

Another illustration of giving a preview of a topic at the begin-
ning, this time per cents. The imrartant subtopics are: meaning
of per cents, finding a per cent ot a number, finding what per
cent it iz, discount, commission, per cent of increase and decrease,
and finding the whole when a part is given. One way 1o proceed
would be to take each subtopic and treat it at lensth. Then in
some classes there would be the question of having time to com-
plete all the subtopics. A better way is to discuss all these sub-
topics using only 50 per cent, 23 per cent, and 75 per cent. Since
these per cents can be easily converted into :imple usable frac-
tions, a big overview of the whole topic can be given in a short
time. The remaining time, vsryving in length according to the
class, can be used for developing further details. The following
exercises are suggestive of the procedure.

1. Find 50 per cent of the following numbers: 16, 52, 100, 432,
La, g, 23, 8250.

2. Find 25 per cent of the following numbers: 24, 60, 72, 234,
Y. 14, 35, $6.00.

3. Find 75 per cent of the following numbers: 24, 60, 72, 14,
L3, 24, $6.00.

4. John had 75 per cent of his examples correct. There werz
12 examples in all. How many examples did he have correct?

5. Draw a cectangle and shade 50 per cent of it.
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6. 1 saw a suit marked $60. A friecnd of mine owned the store
and he told me he would xell the suit to me at 25 per cent off
(ddiscount). What will I have to pay for the suit?

7. I sold $40 worth of Christmas cards for the holiday and was
allowed ‘2 keep 25 per cent of that amount for my work (com-
mission). How much could T Keep?

S. Frank is making 840 a week this year. Next vear he will
get a 23 per cent increase. How much will he then get a week?

0. A certain town used to have a population of 200 persons, It
has decreased 25 per cent. What is its population now?

10. The 3lues played N games and won 4 of them. What per
cent of the games did they win? (Think: 4 out of 8 is what frac-
tion?)

11. A pint ix what per ceut of a quart?

12. T bought a top for 12 cents and sold it for 15 cents. What
wax the amount of increase? What was the per cent of increase?

13. A 84.00 doll, if sold at a 25 per cent discount, will xell
for _? .

14. During a test of 20 examples, the teacher said, You must
get at least 75 per cent of these examples right before you can go
on to the next topie. How many examples was that?

15. If 25 per cent of a number is &, what is the number?

Grouping. Homogeneity of ability in a group is impossible. No
matter how carefully a group is selected there will be differences.
The range of ability, however, can be reduced. When the range is
too great it is ditficult to teach through group instruction. The
purpose of grouping in ability is to make it easier for the teacher
to put into practice what has been said here about levels of learn-
ing and differentiation in depth and scope.

Grrouping i= of two mein kinds, grouping within a class and
grouping into classes from a larger population. We have already
mentioned grouping within a class in connection with various
levels of learning. We shall return to grouping within a class
later in thix section. Now we should like to make a brief statement
con~erning grouping into classes,

Ability grouping by classes is particularly valuable in the
seventh sund eighth grades where all pupils are expected to deal
with the same topies. In this case grouping ix not the responsi-
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bility of the teacher but of the principal. It cunnot be done unless
the school is large enough to make at loast two classes in the same
grade.

Attempts have been made to divide a grade into as many clas-
sitications as there are possible classes. For example, when the
numbers are lurge enough for six classes, the pupils would be
divided into six groups according to ability. This has not worked
too well in the lowest group. The lack of industry, interest, and
responsibility among those who make up u large percentage of
the low group make them hard to handle when they are all to-
gether. Better results are obtained when a total populetion is
divided into two groups according to ability and classes formed
from these two groups. Then the range is not so great as in a
non-selected group and some of the disciplinary troubles of the
low group are avoided.

We have already said that the IQ is not infallible as a criterion
for making subdivisions. It can be used to make a good start but
there are always doubtful cases that must come under the seru-
tiny of principals, counsellors, and teachers on a more individual
baxiz. Past achievement and teachers estimutes must be taken
into consideration as well as the 1Q. Besides this, if it is at all
pussible. and it is possible if the teacher has the point of view
of differentiation in depth and scope and so keeps somewhere near
to a time schedule, pupils should be changed from class to class
when it becomes clear that he is maladjusted.

Again we wish to make emphatic that grouping alone does not
tuke care of individual differences. What is done within the groups
is what counts,

We return now to a report of a lesson in a third grade where
very definitely the teaching took into consideration the differences
in ability of three groups. This wax in January. The class was or.
ganized in September.

The class had been divided and taught since October in three
groups =elected according to reading and arithmetic ability. ‘The
groups were flexible. Children had been changed fromn group to
group as the necessity demanded. The teacher said she could well
have had 6 or 10 groups =o far as the range of abilities was con-
cerned but three groups were all she could handle efficiently. On
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this day Group I contained 14 children, Group II had 9, and Group
III had 9.

The assignment for the three groups was on the blackboard.
Three different textbooks were used, mainly because of the dif-
ference in vocabulary required. This is what was written on the
board (the names of the textbook: are not mentioned).

Group I. Name of textbook, page 201, rows 1 and 2,

Ciroup II. Name of textbook, page 36, rows 3, 6, 7.

Giroup III. Name of textbook, page 120, set 1.

For all groups, (to he done, wheu and if the other assignmens
was finished):

6 balls 12 tops
+8 balls -6 tops

- ——— - — -

Make pictures to prove them.

If you have 12 books and have read 2 of them, how many do
vou have left to read?

26 racans _____tens and ____ ones.

The exercises in the assignments were exercises which the teacher
was reasonably sure the children could do. The purpose was to
establish knowledge and skill already developed. No questions
could be asked by the members of a group doing the exercises
because the teacher was busy with another group. The three
assignments were different gradations of the same topic. Group 1
had addition of dollars and cents, Group II had addition of
columns of single digits and additior and subtraction of two num-
hers of two digits each. Group IIT had addition of single digits
in columnz of three and four digits. -

Lach group was called to the front of the room in succession
standing about the teacher. For about three minutes each the
teacher checked to see that the assignments were understood. In
the first group she had the children find the page and read the
directions. She asked how to write 1 dollar and 50 centx, 50 cents,
and 5 cents, and how to place these numbers for addition. In-
dividual pupils wrote the answers on the board. Since the exercises
in the book had the numbers written horizontally, it was empha-
sized that the decimal points <hould be in a column.
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The members of Group II were asked about their assignment
in xomewhat greater detail. “Find the page.” “Is 136 more or
lexs than 1002 “What do the directions say?” “Do the first
one on the board.” “How many tens and how many ones are there
in 702" *‘Be sure to put the tens under the tens and the ones
under the ones."" These are some of the statements made and
quiestions axked by the teacher.

Giroup I had to be questioned carefully about the directions in
the book. It was obvious that there were reading difficulties. The
discussion went along on a lower level of learning. The column
addition of single digits was done by means of beads on a wire, The
children were reminded how to do the work by means of small
circles made on paper. They were advised to do their assignment
by means of circles if they needed to do so.

When all were set to work the teacher went about the room for
about three minutes to see if all were working and then xhe ealled
back the first group for a lesson. This time the children in the
group were seated in an arc of a circle in the front of the room with
a blackboard handily in front of them.

They discussed first a practical problem arising from one of
their xocial activities. The treasurer of the class had been collecting
25 cents from each member for a project they had decided upon.
He already had 8$7.50 which he counted for the members of the
group, 6 onex, 4 quarters, 1 quarter and 5 nickels. He commented
on the fact that 4 quarters make a dollar and five nickels make
25 eents. \ quarter” and “twenty-five cents' have the sanme
value,

There were three more children who had promised to bring a
quarter each. The teacher asked the question, “How much will
vou have then?" All the members of the group did the work in-
dividually with pencils and paper. One boy said, “It's easy if
vou know how to count hy 25's". Two different methods were
shown. About half the children had done the exercise one way and
half the other way. One group had added 75 and the other had
added 25 4 25 + 25, Both groups, of course, got the same total.
Thix was because 75 and three 25’ ix the same thing.” They
decided that the ea:for way was to add 75.

The work taken in the next 10 minutes was a consolidation of
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what they already knew about the table of 2's with the introduc-
tion of the times sign, the formal language of multiplication, and
the algorism 5 X 2 and 2 X 5. Objective work was intermingled
with the abstrac. Discussion was intermingled with drill. A be-
ginning was made with the concept of division. “Iow many balls
at 2¢ each can you get for 12¢?” was asked ‘along with such
questions as, ‘‘How much would 8 balls cost?"

Then the group was returned to its written assignment and
Group IIT *vas called up for a lesson.

The purpose of the work with Group 11 was to make clearer
the meaning of one-half. The teacher tore it a corner of a paper
and asked if it was half the paper. The ckiudren replied, “No.
it is not even.” They divided circles, squares and rectangles into
two equal parts by estimate and shaded une-half of each. Then
they turned to getting half of numbers. Fach member had 20 small
heads strung on a stiff wire and found half of several numboers
by trial. They could get 15 of 4, 1, of 8, and !'; of 12, by making
sure that there was the same number in each of two groups.
Finally the method of writing one-half in figures was given and
the meaning was explained, 1 of 2 equal parts.

The entire lexson period was about 45 minutes. Group I1 had
a written assigrment on this day but did not have a meeting as
a learning group. The teacher found it rather impossible to take
care of more than two groups a day except for the written as-
signment.

This dexeription of teaching by groups has been given thus in
detail as a suggestion as to how it can be done. Many teachers
state that they would like to take care of differences in ability
by groups within their classes but do not sce how to manage the
various groups.

(reometry. In order to think with any elarity concerning provi-
sion for individual differences in demonstrative geometry it s
necessary first to consider the objectives of the course. As long
as we insist that the aim is to have students learn how to prove
theorem after theorem ind be able to reproduce the proofs at will,
there ix little hope of u sutisfactory differentiation on different
levels of ability, There are o many details to think about in such
a case that there is no time for the kind of development. that is
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necessary with the slower groups. However it the min is to neet
a few large objectives as has heen suggested of late, mueh can be
done.

There are first of Wl the faets of geatneres s the geotietrie con
cept= and geametrie statements of relationship, These are mndae
mental to all stwdents tking geometey. There is also the denuon
strative side of geometry Students <houbd Tearn what oo deduenive
proof s aned how it difters frome an eductions They nead o learn
to distingnish between by pothesis aned conelusion and ~ee the
relationshap of the hvpothests to the whole proat Before this they
st bearn the sientivanee of the W Then™ relationship They
By to Jearn the ity of attemptingg to dse any statetent asan
authority Ladure the carnlitions of et statement ave tultilled,
These and w0 cery fow others are che Toger olbjectives we <hould
<cch modetnonstive geomet ey

If we bave these lareer obgectives i nand, differentiation for
\iartolis grondpes I~ l':l~ll)' }\t'~.~lllll'. Ill >t']uml~‘ that are l:ll‘ut- t'llHlU{]l
to have separate clisses of <lower and faster <tudents, eonrses
can beoquite duterent sned ver hase the same general adms The
Jower shidents will peed ueh more experienee with drawing
st mesuring e with inducetive approaches to theorems. The
introduction to proot will be mueh more gradual and infermal.
Many of the thenrems heretofore proved at the beginning of the
conrse <houll be taken intuitively or after measurement. Con
criener theoretas ean be tuhen for granted after construcetion The
Coet that the e anles of anisoseeles trinngle are equad may well
Lo sssnned el the faet eheeked by measurement. A beginning
of Jdeduetion ean e peade gquite informally by asking about certain
tetres, o o reersare this angle and find it to be 707 how many
Jdegrees ave tiere in these ather angles? Give yvour answer without
meastrieg T T i connecetion with sueh tgares 1s one line meet
M oot ers tao itersecning lines, or two parallels eut by o teans
versal The theoren about the sum of the angles of aotriangle may
well o< withowt proot and avariety of corollaries dedsieed
fromo 1t o eaneetion with other topies sieh as angles and arves,
ancbr tenah o ged areas there will be mueh measaring, bt
areontortned dedsetions leadinne graduanlly to more formal work,

Thor canrar crrtainby peed not he made a travesty on demon-
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Prvhonctr e e b eary adter e grest antiny of
ekt st ne seeatedary sehools lewders in thee b of nathe
roceed s beation dternpred o vy the traditiona] seadende
S -3-‘(:’5' ated seapie o et the new conditions Some
pream e oade cbt the continuing lavge pereentage of failnres
e e e vonrse s attested to the faet that they were not peeting
revds e ponndeer of stndents There were tao alterng
fries o tiaae who candd et }mntit }-_‘\‘ :1]21-111':1. ceatnetry, ahied
renrode et slonb U lrop out of nethematios, or b there shoulbd
e Lrrent coirees Tor these persons,

A rhere s o trend toward the tiest alternative, The drop
dopodivent inonathenatios beeame slavtaing to those who suw
P e Yo s henatios amonge those who were no longer taking
Ve sboeer The war poinded np this need and showed the weak.
Loos ol ek sonne people e mathematios, From that time, the
aecenedb dternatice s heeame }m}nll:ll‘. To be sure. courses i
et ec beriaties go baek farther than the war, o quarter of o

centrire at least, bt the war and the subsequent Second Report
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Yo Cotnneeson of the National Couneil of Teachers
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oo e e e aasaees They appeal to students

PRI AR l-l,l‘.‘. ave praeh more theaable and

Fopeed s ierent backgrounds and

o NG One proup of students
e ree e adec beca s besis for Turther study towaed
S sty careers Phere are others who may wish
Sy becnne they are interested in mathenuaties and
ot peeston e ey ol they are not thinking of
coo s peobesaad Peecheround, The restyand at is a large
Sevederore thegbde conrse innd bematies to meet varying

5

Frooprer e of dicciding ~tudents into two groups, one taking
doe el e otheer seneral mathematies iz not so great as the
v e b o v e cenersd mathematios course to meet the
Seends eand the miterest< ool those taKing this course. Tlere are
Progiers e fests to provide oo first approximation for a division
voo e sdeeban ] general mathenwdios groups. Cooperation
bt el tenebers aned counsellors provided with all available data
catpeertdng e <tident= will make 2 workable division possible,
T reud daneer i that those who are taking general mathematies
st adl Peeve to take aoset course without mueh thought given to
tne wpie tnore of abilities in this group. Students in general
nect heka e cury not only from vear o vear but from school to
wniond fron, elass to elass within g school, and within clas=es. No
two clisses are Jikelyv 1o need the same kind of material

W angpest the following very Hexible course as a basis for
ceperal neathenadies in the ninth grade. Tt has virtue in that it
is o ddinenostie approach taking into account individual and
cronp differences

A course in peneral mathematies in the ninth grade should have
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a core of arithietic beeause, for the most part, arithraetic is the
most useful branes of mathematies. Besides, many 1if not most,
of the students em-lled in the course show a decided need for
wore eficieney in arithmetie. But the course should not be limited
to arithimetie.

Our ~tuwdent- live in o world of geometry. Geometrie tigures are
wil about thenn Au elementary knowledge of geometrie figures
ated the reltionships among them will hielp the students not only
to s gteater appreeition of their surroundings but are desirable
aiel otten necessiy in the Kitehen, the shop, fuctory, and the
otfice Tuforad geometry as well as arithmetic should be o part
of the course for wll students of general mathenatios in the ninth
e,

There should be athread of areithmetic aud geometey running
through the vear's work. Be \'()lul these two fields it s not ()lll\
ditheult but unwise to ~state speeifically what should be studied
i ouny (rm noelass Individual and group differences st he pro-
vided for by allowing the teacher and the elass to ~cleet units
frone o suggested st of units,

The arithmetic should be appronched from a diagnostie point
of view. Seldom will a class need the sume kind of approach as was
given in the seventh and eighth grades. It should he taught as
needed. not as new work,

The order of development of details in a topic in the seventh
and eighth grades ix important. Usually there is enough back-
ground in the ninth grade so that order of procedure ix not pura-
mount. Often you will learn nore wabout the members of n elass
by jumping into the middle of & topie or even asking questions
that might in an carlier year come at the end of a topie. Instead of
taking a subject like division of whole numbers or operations
with fractions and mving a enreful developruent from start to
himish just ax if the work had not been done hefore, follow the
teehinique of giving short tests of mizcellancous examples sev-
eral times i week and govern your instrucetion accordingly., This
method of procedure will help you to vary vour arithmetic accord
ing to the needs of the individuals in vour class.

It you are careful to xee that your series of miscelaneous tests
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covers all the essentials in arithmetic, these tests will constitute
vour course of study so far ax the arithmetic is concerned.

Study pupil's errors. Try to find out by careful questioning the
causes of the errors. You will find some errors common to many
pupils. Other errors will be made by only a few. Plan developments
in the hope that with proper understanding many of the errors
will not recur. Help individuals as found necessary. Continue to
study the reactions of your pupils to everything that goes on in
the elassroom =o that vou can check your methods of teaching.
This is the kind of thoughtiul experience that results in increased
ability to make adequate diagnosis of the different needs of your
pupils.

Some davs this work in arithmetic may take the whole period.
VMore often it should not take more than 20 minutes for the test,
the cheeking by the students, and the discussion. You need not
cover all the errors on any one test. Choose the most common
errors. Fit the instruction to the time at your disposal. Long
periods of specifie drill bring quick results but seldom are they
lusting. Another day is coming.

Bevond this arithmetic and =mall amount of geometry, it is
ditfieult to preseribe required units. It is wiser to have a list of
eleotive units. Teachers and pupils together can choose units to
meet their needs and interests.

The units in various textbooks on general mathematics give us
a good start for a list. No one textbook is enough, however, to
take care of the wide range of interests. The check list of units
given in the Second Report of the Postwar Commission is another
good source. There are more units there than.can be studied by
any one class

The units ~hould cover areas of mathematies, such as those
in the Postwar list, but they should cover also areas of living. In
other words there should be social units as well as mathematical
units. The list below is suggestive but by no means exhaustive.

The mathematies found in reading a newspaper.

How [ earn and spend my money.

Preparing to go to camp.

The mathematios of a railroad timetable.
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Buying a dress. Making an end table.

In dealing with these units, the most important thing is to
interest the pupils, to sell them the value of arithmetic in their
evervday living. Competence will not come unless interest is
aroused. When you have the interest of your pupils, learning
can take place.

Many of the students in a general mathematies class will be
average or slow learners. Slow children cannot carry on enter-
prises, investigations, or discussions as complex and as compre-
hensive as those carried on by brighter ones. They do not see so
far ahead, consider so many alternatives, or take into account as
wide a variety of factors. Discussion periods must be short. The
interest of some classes cannot be held for more than ten minutes
at o time on any one thing.

Classes'will vary in interest and attention span. A teacher was
able to keep one class interested in a newspaper unit for a half
hour at a time. The same teacher found another class would stay
with him on the same materiai for only a little over ten minutes.
He did not try to keep the second class going for half an hour just
because he could do it with the first class. An attempt at free
discussion is worth little when interest lags. If you can find units
that parallel the life interests of your pupils, you will be able to
keep up interest for longer periods of time.

You will often have to carry the load of a discussion period
vourself. Pupils will fall in with your suggestions and make sugges-
tions following the pattern of yvours but in general you cannot
depend upon a great deal of originality. When suggestions are
not forthcoming you will have to tell your pupils what to do.
Never let a discussion drag or become lifeless because you are
trving to get something from your students that ic not there.
Always strive for the best kind of pupil participaticn but remem-
ber that when interest fails you are probably attempting the
impossible.

An illustration will help to make clear the meaning of the pre-
ceding paragraph. One teacher carried through a unit on Buying
and Maintaining a Home. The unit took fifteen to twenty minutes
a day for three weceks. The pupils kept note hooks in which they
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recorded important findings and the computations that went with
them. The teacher had source material at hand but she did not
give gene 1 direetions for their use She had to be quite specific
in hera <. With a more competent class she woul.. aave dis-
cussed a,en. suggested a few references, and given the pupils
freedom to study for themselves in class or at home. With this
class she supervised very casefully by directing the members to
particular referen es to answer particular questions.

In discussions she often had to answer questions herself. But
every few minutes some computation was necessary and this she
left to the pupils. The pupils participated in the discussion as they
were able but they were all expected to do the computations. The
better pupils and the teacher carried the load of the thinking
without any attempt to impress the details on the slower pupils.
"This part of the period took on the aspect of social cooperation.

‘I'hus each pupil was being treated according to his ability.
The better pupils got a clearer picture of the whole unit than
the poorer pupils. All of them learned that arithmetic is valuable
in everyday living though some of them did not nor could not
carry through the complex thinking to decide what to do at each
step. .And all of them did the computations. Two of the important
objectives of general mathematics were met —=elling the value of
arithmetic and perfecting the methods of computation.

Other Non-Academic Courses. Limits of space do not allow us to
go into detail with other courses of the so-called second track.
Some of the large cities have many such courses, based upon
industrial and commercial as well as more personal everyday
needs. Smaller xystems cannot be so lavish. Many schools now
have a general mathematics course in the tenth year. This could
well have a core of geometry studied on a lower level of learning
than that needed in the traditional academic course. Geometry
through experience is valuable to many who cannot get it through
logiceal rewsoning. The last vear of the senior high school is an ex-
cellent place for Consumer Mathematics. In that year the stu-
dents can realize their deficiencies in arithmetiz and can take a
keener interest in such things as wise buyving, insurance, and taxes.
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SUMMARY

The fact of variability in the traits of individuuls was known
even in ancient times but it has been left to the last half century
to deai in detail with the vast problem of individual differences
in the schools. Even now we know more about the existence of
individual differences than we do about the manner of dealing
with them.

In Grades I through VIII, all children should study the same
topics in mathematics in order that they may have the same fun-
damental background. Differentiation should be in levels of learn-
ing and in depth and scope. Beginning with the ninth grade, dif-
ferentiation may be made in courses as well as in these two other
ways. General mathematics instead of algebra is better fitted to
the needs of a large group of pupils. Those going into industry
and commerce as well as those going to institutions of higher
learning to specialize in non-mathematical subjects may well take
courses more fitted to their needs than the highly technical sequen-
tial courses.

Grouping, whether by classes or within classes, is only a means
toward an end. The narrower the range of ability within a class,
the more efficiently the teacher can take care of the various levels
of ability.



10. Planned Instruction
IrRvING ALLEN DoDES

THE purpose of this chapter is to describe and illustrate conven-
ient methods for the planning of instruction in mathematics. It
is intended for the practical use of the classroom teacher. For this
reason, questions of broad planning, of syllabus change, of the
large philosophy of teaching and other such problems will not be
touched upon. In the main, the chapter will deal with teaching
the content of the daily lesson or of a small unit consisting of a
few daily lessons.

Need for Planning. According to modern psychology (field
theory), no action takes place without a goal. Hence, there is no
such thing as an unplanned lesson. We shall define the ‘“planned
lesson’’ as one in which the goals have been consciously set by the
teacher.

When he teaches the class, his goal is not **the binomial theorem” but
rather “to review the expansions of (x + ¥)? and (zr + y)?; to progress by
induction to (z + y)* and (z + y)%; to develop a general rule for expan-
sion of binomials; to apply it to (@ + b), (m — p)%, and (2z — 3y)%.

That this sort of planning is present in gond teaching is an in-
tuitive, if unproved, truth. The teacher needs a plan in order to
give direction to the lesson and to make him aware of the relative
importance of various items. It is also true that students seem to
““‘sense’’ an absence of preparation or planning on the part of the
teacher. Perhaps they recognize the cues of momentary indecision,
or maybe it is an undifferentiated perceptian on their part. At
any rate, this recognition of a lack of conscious goal appears to
hamper the student in his search for the meaning of the lesson.

Written Lesson Plans. There are many advantages to a written
lesson plan. It is evident that it makes the goals of the lesson
definite. Psyvchologically, this has the effect of “making them ap-
proach,” i.e., they become easier to reach. In addition, when the
teacher has written the lesson plan, he has mentally practiced
his procedure. The competent bridge player does the same thing
when he bids; he plays the hand mentally. It may not work out
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as planned, all the time, but in the long run he has a decided
advantage over the tyro who knows a formal set of rules but does
not foresee the consequences of each action. A further advantage
of the written lesson plan is that it permits self-criticism. After a
mediocre lesson, the teacher may review his plan and discover
wherein he failed to take full advantage of his opportunities.
After a good lesson, he may be able to find out why it was so
successful. The written lesson plan is sometimes helpful to super-
visors. Sometimes the supervisor who watches a lesson is unable
to tell what the teacher had in mind; a glance at the lesson plan
may aid him in his advice to the teacher,

Although the written lesson plan has all these advantages, it
cannot be denied that there are a few disadvantages. A teacher
who has spent a half-hour writing a lesson plan may be loath to
discard it when the class has developed other plans just as good.
It is obviously uuwise for the teacher to proceed in one direction
while the class is headed elsewhere. Another disadvantage of the
lesson plan is that it is essentially static, whereas the teaching
and learning process is dynamic. I the teacher regards the lesson
plan as a guide (rather than as a crutch), the lesson will be
benefited rather than harmed by the written lesson plan. A
third disadvantage is that teachers may tend to collect and pre-
serve lesson plans from class to class, and term to term. Since the
teacher-pupil-lesson relationship has so many variables, it is rather
improbable that the same situation will be reproduced term after
term.

Probably the best compromise is the use of a brief written lesson
plan after the teacher has gained experience in the planning of
instruction. The methods presented in this chapter are given in
detail for the beginner but may readily be altered for the use
of the experienced teacher.

The Variables in Planning Instruction. There are five main
factors in the plaoning of instruction: the personality of the
teacher, the versonality of the class, the nature of the lesson tn be
taught, vesterday’s lesson, and tomorrow's lesson. All mnst be
taken into consideration by the teacher who plans his lesson.

First, it iz evident that some teachers have a preference for
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one “type” of lesson as compared to another. Some like the ex-
peritentul niethod, some the deductive, some the inductive, some
the heuristic lesson; there are teachers who depend mainly upon
the blackboard, whereas others intersperse models, films, and film-
strips liberally. One group of teachers emphasizes pupii (physical)
activity, whereas others place everything on an inteliectual plane.
There are, in short, as muny preferences and variations as there
are teachers, classes, and lessons. .No one method guaruntees success.
Instruction which does not fit the teacher is apt to feel *‘forced.”
The lesson, even if planned perfeetly on paper, would not “fow.”

Second, it is obvious that classes differ greatiy in their collective
personulities. Some classes prefer a lengthy exposure to concrete
illustrations before going to the abstract; others are impatient
to arrive at the abstraction and deplore a prolonged study of the
concrete example. Again, some classes require careful motivating
techniques, whereas others are driven by inner fires. Some pupils
like to deduce a generalization, then apply it to specific cases;
others prefer to use the experimental method to arrive at the
generulization. Some classes will ask for more practice problems
of the sume type; others will become tired of sets of problems or
exercises which seem repetitive. Finally, some classes are able to
“dig out’’ the lesson in a supervised study set-up; others are unable
to learn in this manner.

Third, the nature of the lesson to be taught is an important
factor in the planning of instruction.

A lesson on congruent triangles lends itself well to the experimental
or model upproach; one on slide rules to demonstrution and tilms; one
on voiumes to 4 study of models; one on indirect method to a study of
reasoning in so-called non-mathematicral situations.

Finally, the losson for today must continue from the lesson for
vesterday and must supply some motivation for the lesson for
tomorrow. This may be done in several ways:

T'oday’s lesson may arise from a homework problem, or {rom & ques-
tion asked by o pupil on the previous day, or from u report muade by a
student or a committee of students. It may be a “natural” continuation:
if, for example, addition, subtraction, and multiplication have already
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been discussed in an algebra class, it is natural for the cluss to expect to
do division rext. Often, today's lesson will supply the link for tomorrow’s.
‘The student who asks, “What would we do if ... ?” is often asking u
logical question for the next day’s lesson. The teacher should compli-
ment the student for his perception of the pattern of instruction aund, if
possible, start with that same question on the next day.

The purpose in providing continuity is to emphasize the fact
that mathematics is a complete pattern in which the individual
lessons are merely experiences nrovided to induce insight.

It seems reasonable to conciide that no fixed set of lesson plans
will fit every teacher, every class, and every lesson. The tracher
may, after years of experience, work out a cherished set of plans;
but copious alterations will be in order whenever they are to be
used.

The “Basic” Lesson. Although there are so many variables in
the construction of a lesson, most lessons are probably of the
developmental type. Most teachers seem to regard this type of
lesson as the fullest expression of their art; and it is very likely
true that almost any topic in mathematics may be taught success-
fully by the developmental method.

In this method, the teacher first motivates the class in order to
energize the learning process. Once the pupils have been made
aware of the goals, the teacher ties the topic to previous lessons
in the subject and to the pupils’ experiences. Following this, the
teacher, usually by progressive questioning, directs the attention
of the class to sub-problems until the main problem has been
solved to the satisfaction of the class. When this is done, generali-
zations and summaries are made, and the class applies its solution
to specific problems.

It would seem that this is essentially the Herbartian-step
method of teaching. Differences in the actual planning and teach-
ing arise, to be sure, in the application of these steps, rather than
in the steps themrelves. A developmental lesson taught from the
“connectionist” (3—R bond) viewpcint is very different frem a
lesson taught by the “field” (gestalt) theory.

The main portion of this chapter will be devoted to methods of
planning this “basic’’ lesson from the field theory point of view.
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‘I'he laxt part of the chapter is set aside for a discussion of the
numerous variations on the basic plan.

PLANNING THE ‘‘BASIC'’ LESSON

It is characteristic of new teachers and teachers-in-training
that thev possess n great deal of undirected enthusiasm. Their
lesson plans are complex, lengthy and usually quite impossible
to fulfill. One reason for this is their methods of planning. The
beginner starts with a profound anxiety about motivating the
lessan. When he has finally created an edifice of motivation, he
attempts to stuff the content of the lesson into its attic. (For-
tunately, it usually protrudes enough to permit rescue—in the
next lesson —by the regular teacher.)

The proper beginning in lesson planning is an analysis of the
aims and objectives of the lesson. When the beginning has been
plauned. the ending should be based upon thix, immediately; for
it ix clear that the problems uncovered at the heginning must be
rexolved at the end.

Only after the beginning and the end of the lesson have been
Jdetermined can the teacher efficiently determine the path to be
followed from one to the other.

Step I. The Aim. The first step of the lexsson plan is, accordingly,
a determination of the *“‘aim."” For all practical purposes, this
does not refer to the larger aims of education or of mathematics,
but to the topic given in the course of study, e.g.:

Rate-time-distance problems with one unknown.

‘I'wo points, each equidistant from the ends of a line segment.
Introductory lesson on the linear graph.

Sum and product of the roots of a quadratic equation.

Step 1. Listing the Objectives. After hix initial glance at the
“aim,” the teacher must differentiate the specific knowledges,
«kills, and concepts involved.

Thiz is clearly the most difficult part of the plan, especially for
the beginning teacher, beeause it involves not only a recognition
of the elements of the lesson, but also an understanding of the
barriers involved in the learning process. However, it ix the part
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of the lesson plan which often can be saved from term to term

without too much alteration.

Rate-time-distance

Meaning of rate, time, distance
Units of these

Relationship (RT = D)
Distance diagram

Procedure for solving

Solution of equation

Checking solution

T'wo points elc. .

Meaning of equidistance from
two points

Meaning of perpendicular, of bi-
sector

How to prove segments equal

How to prove lines perpendicu-
lar

Planning a proof
The proof
Application of the theorem

Graph of straight line
Points and number-pairs
Meaning: axis and origin, etc.
Plotting points Sum and praduct of roots
Table of values Meaning of sum, product, roots
Locus concept Induction to arrive at hvpothe-
Number of points necessary for sis
line Proof of relationship
Use in checking answers
Use in forming equations

Step I11. The Terminal Summary. Once the specific objectives
have been listed, it is sound psychology to prepare the terminal
summary immedia‘ely. This has the effect of eliminating im-
possible goals and of making the path of the lesson specific. In
some cases, a terminal summary is provided by the solution of a
problem, by a conclusion (such as the statement of a theorem,
with explanations), or by a construction. More often, it is in the
form of a series of questions based specifically upon the list of
objectives:

Motion problems:

1. A certain story has it that a boy scout walked 6 miles in 2 hours,
What was his rate? his time? his distance?

2. What is the basic relationship between rate, time, and distance?

3. What precaution must be taken with reference to *‘units of measure-
ment” in applying this relationship? Give an example.

1. How would you make “distarce diagrams” for the following prob-
lems?
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A bt eandosion of s atom, one particie tlies in one direetion,
ar et the n||||n-ll|' direetion,

Lo T - e Duster than Petes Tnoaraee, Pete vas allowed to
<o i seconds before Jack, but Jaek eanght up with him after
aoah e

v Wren Painentered the playgrouna, she saw her brother, Lanee,
at e other ond. They ran to meet each other, ‘They met one-
ed of the distanee from the entranee,

JdThe Paoers and the West Braneh football teams were lined up
at the ir ;.--nl -posts to tuke pictures when it was decided to change
<ihes. Faeh team raced to the other goal-post. The Tigers got
to !li-':l'.‘ HIst,

50 After deeving the distance diagram, how do you represent the
waktees s quantitios?

6. How i~ the information in a motion problem: tabulated?

7. How Jdo vou use this tabulation to form an equation?

S. After solving the problem, how do you determine whether or not
the solution is consistent with the conditions given?

Swm and product:

1. What is meant by the phrases, *sum of the roots,” “product of
the roots™?

2. In the following equatious, what is the sum of the roots? the
produet ?

=3 +0H=0
- 3z =k
- 3z = ()
QW =-5r+7=0
322 + 10 = 27r

3. How would you check the following approximate answers: 2.29
and =054 for the equation 422 — 7x — 5 = 0?

4. IIu\\- \\nuld vou write an equation which has the roots: 1 and 4,
Jaud 56,7 3and H 3,4 Hand 6,77

A, What are two uses tor the sum and producet relationship?

[t iz often wdvisable to terminate the summary with a discussion
question which will provide a smoeoth and pleasant ending for the
lesson,

O
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Why do you suppose motion problems are o important in nas igation?
Wiy do you think seientists have to know how to "make" e(ntions?

Ntep IV Plovdng Supplementary Aids. When the objectives
of the lesson have been listed, and the terminal summary pre-
pared, departmental resources should be explored in order to
tind appropriate teaching aids. Short films, filmstrips, models,
cartoons, editorials, globes, maps, instruments, and tools, are all
grist for the mill,

The choice of teaching aid is quite important, for while a good
teaching aid does not guarantee a good lesson it ix quite possible
fur & poor one to spoil an otherwise successful learning situation.
For example, a mathematies film which has errors will dextroy
the worth of the lexson no matter what the other good features
are.

Supplementary aids in algebra may consist of certain muterials related
specitically to the topic, such ax bankbooks (for interest problemsi:
stork certiticates tfor business problems); geometric models, balunce
seules (for the equation); the spring balance (Hooke’s Law); and yard-
stick with sliders «for positive and negative numbers), Supplementary
aids in geometry and trigonometry include folding rulers with mbber
band attuchments, photographs and enlargements (similar tigures); a
krotted cord ( Pythagorean theorem; surveying instruments, and such,

In some cuses, the supplementary aids will be found in the
depurtmental closet. In others. the teacher will desire to fashion
them, himself; ur the student may take part in their manufacture
or may bring things from home:

In the lesson on motion problems, toy cars or trains are most effective
in pictorializing the situation. In the lesson on “two points equi-distant
13

from the ends of o line segment .., a how-and-arrow may be used.
Tinkertoys are w rich suurce of material, as are Erector sets,

Step V.. Plunning the Motivation. In order to explain the method
of planning motivation, it will be necessary to make some in-
troductory remarks concerning it.

Motivation may be defined as anyv stimulus which causes a
rize in hody energy. For example, hunger, fear, and the injection
of glandular extracets are means of motivation. To be sure, they



PLANNED INSTRUCTION 311

are useless for teaching purposes because they are, in general,
undirected

Methods like punishment, sarcasm, rivalry, bitter competiton,
reproof, and failure are directed methods of motivation which
operate because they reduce the problem to a level easily under-
stood by the student. (For example, the student may not under-
stand the importance of the goal of the less~n, but he will under-
stand the importance of aveiding the teacher's anger.) These
methods are, however, poor for another reason. The real goal,
in this case, i avoiding the displeasure »f the teacher; the sub-
stitute goal brings about insights which are loaded with a pattern
of dislike for the teacher and the subject. Long after the lesson
has heen forgotten (the lesson is the secondary achievement,
here), the dislike of teacher and subject (the primary achieve-
ment) will remain,

Similarly, praise, reference to marks, parental approval,
“races,” mathematics tournaments, and the like, serve as motiva-
tion because ‘they supply substitute goals which are easier to
perceive than the true goal of the lesson. In this case, the secon-
dary achievement (the lesson, itself) is not unpleasantly loaded;
but it should be kept in mind that the primary goal was not a
mathematical one.

On the other hand, referring to previous lessons, to hobbies,
to sports, to the outside interests of children, and to other sub-
jects are samples of good motivation because they utilize the
psychological principle of closure, i.e., they tend to fit the new
idea into a pre-existing pattern of ideas. The use of models and
supplementary aids is also good motivation because it is directed
and because it reduces the lesson to a level easily understcod by
the student (it seems to make the goal nearer because perception
15 hetter).

Before going to actual examples of motivating techniques, it
might be wel to suy a word about excessive motivation. It seems
to be far better to have insufficient motivation than excessive, so
far as the teaching and learning situation is concerned. If the
lesson is otherwise good, the pupil will become motivated, any-
how. Excessive motivation brings about an effect like over-excite-
ment in small children (the irradiation effect).
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For example, a certain teacher motivated a lesson in probability by
caleulating the odds in an uctual dice game played in class. While this
was g furly attractive example of a simple caleulation of odds, it wis
unsatisfactory hecause the class refused to settle down to the real lesson,
afterwards.

In another cluss, the teacher went to a great deal of trouble to set up
a chemical experiment involving a small explosion in order to motivate
i lesson in the solution of chemical equation problems. To his utter dis-
may, he found that the lesson was completely out of hand.

In planning a motivation, the following items should be kept
in mind: (a) it should not consume more than a minute or two
unless it is an actual part of the lesson; (b) it should refer to the
actual goal of the lesson, if this is at all possible; (¢) it should
make use of the laws of modern psychology.

The three “laws" described below have been postulated in this
chapter for the sake of convenience in separating tvpes of moti-
vations. Actually, there is much overlap amnong these “laws’:

Law I: The Law of Natural Closure. When a student has learned
a certain amount of mathematics, there is a psychological desire
to “fill out” the pattern whenever the incompleteness of his
learned pattern is made clear to him.

Law II: The Law of Apparently Near Goals. A student will tend
to respond to a challenge when it is not too difficult, even if he
1s not really interested in the topic. Thus, increasing the under-
standing of the goal by increasing the perception of the student
will tend tu “make the goal approach.” When it is apparently
near, the student will respond. (This is like putting on eye glasses,
or using field glasses. The object is not really nearer; it is merely
clearer.)

Law III: The Law of Substitute Goals. When a student can be
shown that the goal is part of a pattern of other interests or de-
sires, the law of closure begins to operate.

Motivations under Law I. In the following examples, the mo-
tivations are clearly an integral part of the lesson. They may,
therefore, be called intrinsic. They operate most successfully when
the teacher and class are both enthusiastic about the subject.

1. Roots and coefficients: One of the problems assigned for homework
was the solution of a quadratic by formula. This problem had been put
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on the black board by the request of the teacher. The teacher asked how
the approximate answers could be checked. The class answered, “By
substitution in the original.” The teacher praised the cluss, then said,
*That would be a good method for checking, but today we're going to
learn a method which is easier, fuster and just as accurate. Besides, it
will work for exuct roots and complex roots, just as well.”

2. Recond lesson on logarithms: “We have already practiced with
logarithms to base 2, 3, and 3. Today we will investigate logarithms to
the base 10 to see what the advuntages and disadvantages are.”

3. Parallel lines: “'The class has spent a lot of time on lines that cross.
Is it possible for a pair of lines on a flat surface to continue forever with-
out ever crossing?"

4. Binomial theorem: The teacher had the aim of teaching the class
to solve problems of the type (axr == by)". When the class entered, there
was a problem on each front board: (z + )%, (x + y)}, (z + ¥)*. The
class had been trained to start on ‘“‘seat problems' as soon as they
arrived. The first two were soon put on the board by volunteers, but the
teacher interrupted the class while it was struggling with the fourth
power, "I don't like to interrupt you, but I can do this one mentally.”
A student said, "Well, you memorized it!” *“All right,” said the teacher,
“name another number to use as exponent.” The boy said, “32.” This
led into a discussion of t'ie number of terms to be expected if the pro-
nosed expunsion were done and then into the usual induction. The class
agreed to ask for (x 4+ ¥)* which the teacher did.

5. Solving the quadratic by formula: “One of the important functions
of mathema*ies is to solve equations. You have already solved equations
likez — 4 = 0and 2r — 3 = 2r + 5. Equations of this type are called
linear equations for reasons which we discussed previously. You have
also learned how to solve certain quadraties like 12 — 62 + 9 = 0. How
wis that solved? Can vou think of a situstion where you could not usce
this method to solve a aquadratic?”

6. First lesson on cireles: *“You have already studied figures formed
by two lines, What do you call such figures? (angles, pair of parallels).
You have also studied closed figures formed by three lines. What are
they ealled? Today, we're going to begin the study of a very important
closed figure formed py only one line, Can you guess what it is?”

Motivations under-Law I'1. When the objectives of the lesson are
<o difficult or involved that the students may have difficulty in
understanding the problem. the motivation should be of a type
which makes the problem clear:
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1. Overtake problems: Two boys were asked to go to the front of the
vroom. They were placed side by side at one end. One boy was asked to
start walking across the front of the room. After he had walked five or
six steps, the other boy was asked to overtake him,

2. Overtake problems: “Lust year, after a big steamship left the pier,
it was discovered that w very important passenger had been left behind.
Fortunately, the ship wis not very far away, =o he hired the owner of
i speedboat to take him to the ship.”

3. Locus: The teacher ticd a piece of chalk securely to a piece of
string and swung the chalk vapidly. *What geometric figure does this
look like?"

4. The sine curve: The teacher showed a film culled “Periodic
Motion.”

3. Congruent triangles: The teacher had cut a triangle out of card-
board and asked what measurements would have to be made to make
another triangle exactly like the one he had.

6. Similar triangles: The teacher brought ina 4 x 3 and an 8 x 10
photograph of his xon. The teacher and class discussed reasons why the
two photos were similar.

Most lessons which employ supplementary aids are using this
law of motivation. “Concretizing” the problem tends to make
pereeption easier; thus uses Law II.

Motivations under Law II1. The thivd law .. ust be used in
classex where considerable energization is necessary. Here the
true goal appears too “distant,” <o a substitute goal is provided.
The substitute goal may be based upon current events, comice
strips. puzzles, games, recreations, competitions, and tests. Or
anovel situation may serve as motivation: a student may, for
example, take over the class (this is like a game). Committees
may be set up; here the group activity serves as motivation.
Phyxieal activity, such as board work, making models. may serve
to energize the instruction, .\ few examples are given in the
following:

1. Mation problems: “How many of you have seen jet planes? At
what rate does w jet plane travel? You can understand why some people
call this the Age of Speed.”

2. Two points each equidistant: On the previous day, the “extra
eredit” assignment was made to read about the crossbow and to report
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to the class. The report took two minutes. The teacher asked, “How
must the arrow be placed in order to be sure it flies straight?”

. 3. Interest problem: The teacher wrote the following problem on the
board before the class entered: “*When this school was built in 1915, a
student by the name of Smith deposited $1 in the school bank. If the
interest rate is 3¢ compounded quarterly, how much would you pay
for Smith's bank account? Gusss!” The estimates ran as high as S10.

4. Graphs: “How many of you have been reading about the new
experiments with small atom bombs? A great mathematician now at
Princeton worked on the busic Relativity Theory which made the atom
bomb possible. Does anyone here know his name? As you probably
know, Einstein's work had to do with space. He showed that you can
use numbers to tell about things in space. Today we're going to do the
same thing on a small scale—we’re going to learn how to tell the position
of things by means of numbers.”

5. Binomial theorem: The teacher had us his aim the illustration of
the power of the inductive method of discovering mathematical theorems.
“How many of vou read science-fietion novels? Recently T read a story
in which a scientist was asked to tind the volume of a four-dimensional
figure with equal sides and angles. At first he didn’t see how it could be
done, but after a while he began to think about the formulas for the area
of a square and the volume of a cube. Then it came to him in a flash.
(‘an you guess how he figured it out?” After a student “got it,” the
teacher continued, “You have just used a method of reasoning called
“induection.” We're going to apply the same method to find an easy
way to solve problems like (a2 + b)¢ or (@ — b)°. ("an you think how to
start our induetion?”

Step VI: Planning the Development. You have now (a) deter-
mined the aim of the lesson, (h) listed vour objectives, (¢) com-
posed u terminal summary to fit the objectives listed, (d) sur-
veved the supplementary aids which might be appropriate in
vour leszon. and te) planned your motivation. It now becomes
necessary to deeide how to channel the energy of the class to
resolve the problems which have heen made clear and desirable
toit.

It ix during the development of the lesson that learning takes
place. According to field theory. after a supply of energy has been
made available. and afte; attention is directed to the goal (or
<ubstitute goal), the phenomenon known as “perception’’ oceurs.
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The student now perceives at least one aspect of the goal. After
a sufficient interval of perception, the phenomenon known as
“insight” takes place. Here the student recognizes the pattern
which constitutes the goal. This insight is the aim of the develop-
ment.

Since insight follows perception, it is necessary to ensure effi-
cient perception in order to ensure learning. This may be done in
several ways:

1. Perception may be sharpened by high motivation.

2. The time allotted to perception may be increased by going
slowly and by giving sufficient time for thought.

3. The abstraction which it is desired to teach may be intro-
duced by a concrete illustration which is more easily perceived.

4. Where the “whole” goal is too large to be perceived by the
student, smaller “wholes” may be taught, then integrated. This
will be callec the method of “progressive wholes.”

In the usual type of lesson, development is accomplished by the
(uestion-and-answer method. If the atmosphere of the class is a
good one, there will ordinarily be enough cross-talk and general
dizcussion to cause the formation of insightful relationships, The
teacher should plan a few key questions which will neep the class
on the desired path.

Of course, questions which have perfect form do not guarantee
a good development; and questions which arc cnnsidered to be in
poor form do not necessarily cause any damage. However, ques-
tions of the following types are usually frowned upon:

These two lines are . . . (incomplcte question)

What do you think about this triangle? (vague question)

I the sum 3x? (yes-no answer)

When you add 2, the result is what? (surprise ending)

How many think this is right? (the vote question)

How do yon construet this line and what does it intersect? (double
question)

Giood questioning refers to questions which offer an amount of
challenge which is just right. Questions which are too easy are
sometimes met by disdainful silence and at other times by chorus
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answers. Questions which are too hard cause discouragement on
the part of teacher and class. Between these two extremes lies
the pattern of good questioning. Experience has shown that a
liberal interspersing of “‘why’ and “how’’ questions in the devel-
opment serves to stimulate discussion and thought. In the follow-
ing examples the “why” and “how” questions have been omitted,
because it would be unnecessary to write them in a lesson plan.
It is understood that they are to be asked.

1. Motion problems: At what rate does an ordinary airplane travel?
What distance would it travel in 30 minutes? Suppose a car is traveling
at 30 miles perhour; what distance would it travel in 4 hours? in 2 hours?
in z hours? Suppose two trains start at the same place at the same time.
One goes at the rate of 40 mph due north, the other at 50 mph due south.
How far apart are they after one hour? after 2 hours? after z hours?

2. Exponential equations by logarithms: The class had solved 37 = 3’
and 2v = 2% They were given 2¥ = 8 to solve. This was a motivation
using Law I. The teacher asked: “How would you solve 2¥ = 8? Can
vou think of an exponential equation something like this which could
not be done so easily by this method? Try to estimate the approximate
value of z in the equation 2 = 7. This means that the answer is 2-point-
something. What does this sort of exponent (pointing to 2.5 which was
the guess) remind you of?”’ This was technically a vague question, but
every hand went up and the class realized that logarithms were involved.

3. First lesson on circles: “If you wished to construct another circle
equal to this one, what would you measure? Consider this circle with the
5-inch radius. With respect to the circumference, where would a point
three inches from the center be? 8 inches? 5 inches? What are your
conclusions with respect to distance from the center and the circumfer-
ence? "lere are two equal circles, O and (7. Mark off equal arcs A B and
A’B’ and draw the radii. What would you expect to be the relationship
between angles AOB and A’0’B’? What is one method of proving two
angles equal in two equal circles? What do you think is true about chords
AB and A’B’ ia these circles? How do you usually prove two line seg-
ments equal? But there are no triangles here! How would you draw lines
to make the triangles which you mentioned.”

In the above, the developmental questions have been made far
more detailed than would be necessary or desirable on a written
lesson plan. Usually a cue or brief note is sufficient to indicate the
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course of the development:

4. Discriminants: The class had been separated into four parts and
each part was assigned to apply the quadratic formula to one of the
following:

+6x+ 7T=0
2+ 6x+ 8=0
22+ 6xz4+ 9=0
224+ 6x4+10=0

They were asked to leave the answer in radical form. The radicals were
V'8, v/4, v/0, v/=4. The cues on the lesson plan were:
a. Solutions on board
b. Teacher and <lass solve all except last
. Speculation about v/—4
d. Imaginary axis, i
e. Why the discriminant shows type of solution.

[¢]

There has been much speculation regarding the relative advant-
ages of (a) logical vs. psychological, (b) inductive vs. deductive,
(e) why vs. how, and other schemes of development. This has
led to experimentation with the following conclusions:

1. It is quite true that some teachers are consistently success-
ful whereas others are not,

2. Yet repeated experimentation has failed to show any ad-
vantage of one type of development over any other, and

3. Expert analysis has failed to show that any specific teaching
act or any specific teaching method is significantly correlated with
this success or lack of success.

Under the circumstances, the teacher can only draw upon the
generalizations of educational psychology in planning his develop-
ment, in the hope that these are more likely to lead to success than
a haphazard approach. The crux of the matter, in planning the
development, would seem to be the mature of the class. In a
bright, interested class, it is perfectly possible to pursue a strictly
logical sequence:

“What theorem have you proved concerning the angles opposite the
eqral sides of an isosceles triangle? What does this suggest for a triangle
which i3 not isosceles? What theorem can be used to prove that one angle
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is larger than auother? What line can be drawn in this triangle to make
angle (! a “remote interior angle”’? (There are a number of such lines, of
course; the claxs ix now led, along logical lines, to choose the useful one.)

In a class which ix unable or unwilling to integrate the lesxon
into its own pattern of pre-existing interests or concepts, the so-
called pxychological development must be used. This psychological
development is, usually, another logical development in which
the steps are shorter. In some cases, steps are rearranged. In
others, the difficult steps are postulated or are covered by easy
analogies.

What theorem have we proved concerning two angles of an isosceles
triangle? Now look at this scalene triangle which I have cut out of paper.
Are the angles equal? Which is the largest angle? the smallest angle?
(Measurement with protractor may be done.) Which is the largest side?
the smallest side? What general conclusion do you think can be drawn?
Let's fold the paper so that AB falls along AC, like this. Why doesn’t
AB stick out? Now look at angle ADT and angle C. Which is larger?
How do vou know? Suppose you have started with this folded figure.
How could you tell that angle ADT must be larger than angle C in the
smull triangle?

The psychological development takes a great deal more time,
as well as trouble, because there are so many short steps. In
writing the plan of such a lengthy development, the teacher might
note just a few key phrases:

Isosceles triangle comparison

Paper scalene triangle (get paper for class)
Fold paper

Elicit construction lines and proof

He might also note two or three questions which he thought would
direct the class properly.

Similar considerations hold with reference to inductive vs. de-
ductive developments. A bright class will take in its stride the
proof that the sum of the angles of a triangle is 180 degrees. In
another class. an experimental or statistical study will lead to the
concept desired. It will still remain necessary to prove the theo-
rem, but the goal will be understood more clearly. In some cases.
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it is advantageous to use the inductive technique even for bright
classes. For example, even a bright class has trouble learning
about exponents, deductively. How much easier it is to use in-
duction!

--------

Simplify 53:5-5:5:3, 3:3 (‘Then a few more examples); How would you
simplify = x-x-x-r-2 2 -2-2-2> Now simplily x%'z*? What general rule
cah you make . . . ? What is 28 3?? In the light of this example, how must
you modify the general rule which we wrote on the board? Apply your
rule to 26 724; 28 28, 28 26, 26 7. 26 2% Byt 2% is 64 and 2¢ 2% actually
means 64 64. How much is that? What is your conclusion about 292

It is rather evident that the deductive, logical method is the
easier and more direct development wherever the nature of the
lesson warrants its use. YWhenever the goal is so complex, however,
that the student cannot perceive its true pattern all at once, it
is probably advisable to plan a psychological and, or inductive
development. In this case, learning still takes place by “wholes,”
but the n.ethod of “progressive vholes’” is used. In this, smaller
“‘wholes’ are learned, according to the capacity of the student,
and then these are integrated as desired.

Very much the same considerations apply to the why-how
controversy. If the class is able to perceive “why" before ‘‘how,”
this is clearly the most satisfactory scheme of development. How-
ever, many topics (such ax “square root by the algorism”) are
so difficult to understand that there is little or no possibility of
deducing & method before applying it. If “why"’ precedes “how,”
it means that the method must be developed by deduction. In
the case of a topic as difficult as this, there is no help for it. The
“how" is shown, and then justified immediately by multiplying
the square root by itself to obtain the original number. When
the “why " follows the “how,” it may consist of a “‘justification”
rather than a “proof.”

Step V1 1: Planning the Board Work. Whereas the notebook is a
student’s own summary of important points, the blackboard is
the notebook for the entire class. On it is a running summary of
the lesson, =0 that the class always has before it the goal and the
steps leading to the goal.

In planfing a lesson, the teacher must take into account the
physical limitations of the class blackboard. He must think of the
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placement of the various items, consider what i to be kept and
what is to be erased. In some cases, teachers may make a rough
sketeh or note of the plan of utilization of blackboard =pace.
Such a plan is shown at the end of this zection.

Ntep VI Planning Drill and Generalizations. The lesson plan,
written or mentally plannea, is now almost complete. Irom the
viewpoint of the student, he now knows what the purpose of the
lesson wax and he has gained some insight into the knowledge,
concept, or skill which was the content of the lesson.

The psvehological steps which follow are (a) differentiation,
thY integration, and (¢) the attainment of precision. These take
pliace as a rexult of drill and generalization when these are properly
planned and accomplished.

“Ditferentiation” refers to the -fact that learning takes place
by “wholes." You learn a person’s face before vou learn the color
of his eves, Students learn the theorem about inseribed angles
hefore they dizecover that un angle inseribed in a semicirele is o
right angle. The teacher hurries the process of differentiation by
directing attention to corollaries, applications, and exercises. The
lesson plan should, therefore, inelude problemis which cause the
<imall details of the lurge pattern to emerge. These may be graded
problems of the usual type, theorems and vorollaries, or applica-
tions of the concept to a different situation:

1. After teaching the solution of the exponential equation by logu-
rithms, the teacher asks the class to differentiate between log (8, 2) and
“tog SY (log 20,

20 After teaching the binomial theorem, the teacher asks the class to
use it to tind 1,028,

3. After teaching infinite geometrie progressions, the teacher applies
it ) to ananalogous geometrical probleny, and (b)Y torepeating decimals.

4 After s lesson on areas in plune geometry, the class s given a figure
made up of different geometrical figures,

5 After teaching the indirect method of proof, the teacher cails at-
tention to life <ituntions requiring this method, cuch as circumstantial
evidenen,

6. ATter scies=on o numericad trigonometry, the teacher has the cliss
tmeietre the heaght of the sehool flagpole using their protractors and a
vardstick,
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“Integration” refers to the fact that learned material gradually
fits itself into other patterns. For example, at first the inseribed
angle theorem stands by itself ax an isolated “whole.” but under
the skillful direction of the teacher. the unity of pattern for chord-
chord angles, inseribed angles, and secunt-seeant angles becones
Appatrent.

Almost alwavs, the same drili which eauses differentintion
brings about integration, the reason being that the student sees
the pattern from a different point of view. The teacher muay nssist
the process of generalization by providing appropriate experiences:

1. After studying the straight line graph, the class is led (o think
about points off the line (locus idea).

2. After teaching the chord-chord angle, the teacher treats the centrad
angle formed by two diameters as a chord-chord angle,

3. After teaching the quadratic formula, the teacher brings about a
situation in which a quadratic done previously by factoripg is now done
by the formula.

1. After teaching the “digit”’ problem, the teacher disensses the binary
system.

J. After teaching complex numbers, the teacher refers to the three
dimensional graphs of xecond and third degree loci (see Fehr, Secondary
Mathematics, p. 285-91).

6. After teaching plane loci, the teacher allows the cliss to diseuss
solid loel briefly,

The third function of drill is to bring about “precision.” Often
thix ix the only thing consciously aimed at. However. since it ix a
normal consequent of ditferentiation and integration. there is no
great need to diseuss it separately.

Two important things to remember in planning drill are:

1. Drill nmst be motivated. If the lesson wus well done, the
need for dreill will be apparent to the cluss and no further motiva-
tion will he necessary. If the lesson was not sufficiently success-
ful. motivation ean be brought about by Law IT; i.e., by grading
the drill work in such a way that only a slight challenge is offered.
If the lesson was poorly received, Law TT1 must be invoked: e.g..
“Problems like this will be on vour next test!” The methad of
motivation of drill ix, in reality, a key to the opinion a teacher
has of his own lesson.,



PLANNED INSTRUCTION 323

2. Drill must provide for ditferentiation, integration, and pre-
cision. The method for accomplishing these three objectives of
drill has been explained above.

Step 1.X: Planning the Assignment. Most teachers regard the
homework assignment as an important part of the mathematics
lesson. Experimental evidence on this question has been far from
convincing, although it appears to favor somewhat the homework
groups. However, as a practical matter, teachers are expected
to assign homework. The question arises how this should be
planned.

Three methods of assigning homework are (a) the repetitive
tyvpe, (b) the voluntary type, and (c) the spiral type.

The repetitive type of homework assignment is basically con-
trary to the tenets of field theory, although it is in full accord
with stimulus-response psychologies. According to modern psy-
chology, learning takes place at the first actual perception fol-
lowed by insight. Repetition of the stimulus has the effect of
lengthening the interval of perception; it does not, per se, bring
about learning.

The voluntary type of homework assignment, in which the
pupil does whatever he thinks is necessary, may possibly be suc-
cessful where the motivation is high and the pupil knows what
he needs. It hardly seems reasonable, however, to expect pupils
to be able to recoguize their own needs, especially if they do not
understand the work. Besides, as a practical matter, it is difficult
for the teacher to check or go over voluntary assignments in a
class,

The spiral type of homework assignment, developed by Simon
.. Berman, chairman of the Mathematies Department at Stuyve-
sant High School, New York City, is in full accord with the prin-
ciples of field theory. In this method, the main part of the daily
assignment deals with previously learned material, while a small
part is devoted to the material just learned. The spiral assignment
takes into aecount the fact that forgetting ix a normal part of the
phenomenon of learning. After the pattern has been learned; i.e.,
it has been ditfferentiated and integrated, and a certain amount of
precision has been gained, it begins to fade. First, precision is lost.
Thus, a student who at one time was very facile in the solution
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of “originals” in geometry becomes hesitant. After a further in-
terval, the effect of differentiation and integration disappeats.
The student not only cannot solve an “‘original” quickly, but he
is even unable to reconstruct the pattern of analysis which he
once knew. Finally, only the bare bones of the pattern of proof
are left. The adult, for example, remembers that there is such a
thing as proof, but he is unable to remember the steps.

In the spiral method, the various knowledges, skills and con-
cepts are interwoven into successive assignments in such a way
that precision is not lost. Furthermore, problems are brought
before the students at intervals in such a way that maturation
and growth are encouraged.

For example, suppose Topic A is taught on day one. Problems are
assigned from this topic. On the second day, another problem from topic
A is assigned. Now one day is skipped. On the fourth day, another prob-
lem from topic 4 is assigned. Now two days are skipped. On the seventh
day, another is assigned. Now three days are skipped. On the eleventh
day, another is assigned. Now four days are skipped. On the sixteenth
day, another is assigned.

This interval is lengthened until it reaches 5 to 10 days, depending
on the importance and difficulty of the topic. Then the topic is re-ussigned
once every week or two.

For the first 20 days, the pattern of assignments would look something
like the following before the deletions which will be explained later:

DAY TOPICS I DAY i TOPICS
L A 11 ARWK
2 | AB ' 12 : BFIKI,
3 ! BC 13 CGJIN
4 ACD B R DHEKMN
) BDE 15 EILNO
t CEF ' 16 AFOP
N ADFG : 17 : BGKNPQ
] BEGH 18 CHLOQR
9 C'FHI 10 DINMPRS
10 DGIJ : 20 : EJNQST
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In actual practice, the teacher will be influenced by three fac-
tors; (a) If topic .1 leads to topic G, and if the study of topic G
involves u review of topic .4, then the assignment of topic A may
be terminated as soon as topic (7 is taken up. (b) It will be noted
that on certain days (which could, of course, be calculated),
topics tend to pile up. In this case, the teacher may either omit
one or more of the less important items, or may place the item
on u near day where there is no such accumulation. In actual
practice, this seldom occurs because of the first factor. (¢) A
<pecific assignment may accumulate too many difficult problems,
by pure chance. A few interchanges between adjacent days will
always solve this problem.

This method, which at first glance seems so complex, is in
reality very eaxy to apply. The following step-by-step procedure
shows how the first 15 assignments were made in Plane Geometry
IT, using the S—S—S textbook.

Furst step: Rule a notebook into “cells,” allowing one cell for each
homework assignment. It is convenient to use a hard covered 8” x 10”
notebook. Start on a left-hand page and divide each page into three
vertical columns and five horizontal coluinns. Number the cells con-
secutively from 1 to 60 for a seinester course.

Second step: The first topic was “ratio and proportion.” This is covered
in pages 205-208, with exercises on pages 207 and 208. On the first day,
207 2, 4, 6, and 208 2, 4, 8 were assigned. Then, immediately, 2077
and 208, 5, 10 were written in the second cell, 207, 8 and 208 ‘11 in the
fourth cell, and so on up to the eleventh cell, in which 208718 was
assigned. No more were assigned from those pages because it was felt
that the work on similar triangles would cause review of the concepts of
ratio and proportion,

Third step: On each day, when the homework for the new topic was
assigned, the main part of the assignment had already been written by
the spiral method. The teacher glanced at the problems to be sure the
assignment as a whole was not too heavy. After rearrangersents, the
first 15 assignments were as follows (the work preceding page 207

¥y Y
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had been left over from Plane Geometry I from a spiral assignment):

DAY TOPIC NEW WORK BALANCE OF ASSIGNMENT
. 1: Ratin and | 207.2, 4, 8 35/1,2; 41 2
| prop. 2082, 4, 8
2! Propor- 209/1; 21072; 39/1; 207 7; 2085, 10
tionals 211/
3| Line par. 1] 213/4,5 39/2, 3; 207, 8
side
4 | Prove lines | 218,16, 17 35/4;41,3;208.'11;213 6
5| Construc- Construction | 41/4; 213/7; 2183, 4; 215 2u;
tion 216,/1
6| aaa = aaa | 2211, 4 35/5; 39.°5; 208 12
7| Corollaries | 222/5,6;223/6| 41/5; 43-2; 213 '10
8| Products 2242 35/6;43,3; 21819, 222 ,, 223 7
9| Other 227/5 41/6; 514, 20813, 222 G
methods
10| Int. chords | 231 2 43/4; 51, 2; 222.'8; 224 6; 227
11} Tan. and | 231/3" 222/2;| 43/6; 56,7; 2227
sec. 2332
12! Alt. on hy. | 237,73, 4 59,/4; 231/4; 232 3
13 | Construc- 2383 56/9; 224,'7; 233 3;237.'H
tion
14{ Pyth. th. 240 4 64/19; 68 2; 232,/4; 237, 6
15| Special tri- 83/4; 224 '8; 223,4; 240,90
angles' |

! Problems from a mimeographed sheet were used for the special triungies,

Of course, it is to be understood that the listing displayed above
is an explanatory one; the actual assignment notebook consisted
of a series of 60 cells in which the numbers of the problems were
entered.

In addition to the problems as shown, there was an optional
assignment on each day to intrigue and challenge the brighter
student.

The Complete Lesson Plan. The method of planning a basic
lesson may be summnarized in the following steps:

1. Read the aim and decide what the central purpose of the
lesson is.
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2. List the objectives carefully. Accomplishment of these ob-
jectives must mean accomrplishment of the aim of the lesson.

3. (Leave the rest of the first page blank.) On top of the second
sheet, prepare the termunal sumnmary which will ensure that the
class has realized the objectives of the lesson. The terminal sum-
mary must refer specifically to the objectives listed.

4. Go back to the first page and decide on the supplementary
aids to be used. The lesson will probably revolve about these, if
you decide to use them.

5. Now plan your motivation. Unless the motivation is an
integral part of the lesson, plan to consume no more than a min-
ute or two.

6. The development of the lesson should be continuous with
the motivation. Match the Jcvelopment to the lesson and the
class. A few cue questions and notes are sufficient, in general.

7. It may be helpful to plan the hoard work briefly.

8. Plan your drillin such a way that it brings about differentia-
tion, integration and precision.

9. Plan vour assignment, using the spiral method.

The following condensed record of a lessoa is offered to illus-
trate the result of a lesson plan. The actual reaction of the class
was included to make it more readable. Although no claim is
made as to the worth of this lesson plan in any other class, it
may be stated that the lesson was eminently successful for the
teacher and class involved. (No assignment was made in this
class because it was a demonstration lesson.)

Record of a Lesson on Graphs. This was a normal class in the
first semester of an average high school in Queens, New Ycrk.

Motiweation: How many of you have been reading abont experiments
with small atom bombs? (Almost the entire class raised hands. It had
been in the morning paper.) A great mathematician now at Princeton
worked on the basic Relativity Theory which made the atom bomb
possible. DDoes anyone know his name? [Einstein.]

Development and Drill: As you probably know, Einstein’s work had
to do with space. He showed that you can use numbers to tell about
things in space. Today we're going to do the same thing on a small
scale --we're going to learn how to tell the position of things by means
of numbers.
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Suppose we call this row (the middle row), row 0; this one, row 1;
and this row, row 2. Write in your notebooks, R = 0, R = 1, R = 2,
Now let's see. ‘This is row 2, this is row 1 and this is row 0. What shall
we call this row? {—1.] Good. What shall we call this row? [—=2.) Good.
Be sure to write your row number in your notebook.

Now let’s see whether we can identify a person by this number. Will
the person with row number 1 please stand? (The entire row stood.)
(The teacher appeared chagrined.) Something’s wrong! I meant only
this girl. What other information would be needed to identify this par-
ticular girl? [The seat number.] How many numbers are required to
locate a single person in this claxs? [Two.]

All right, let’s number the seats, too, if we really must. This middle
line is line 0. This one ix line 1. Can anyone help number the other lines
of seats? 2, 1,0, —1, —2]

Now, let’s see whether we can identify u particular person. How many
numbers will we need? [Two.] All right, I'll call two numbers; the first
oue will be your row number, the second your seat number. Please
stand for an instant when I call your co-ordinates (that means your
two numbers), (The teacher practiced calling on pupils by coordinates.)

How many numbers or co-ordinates are needed to locate a single per-
son? How many numbers does each person have? (On Board I, the teacher
wrote:

Each PersoN Is A NuMBeR-Palr
Eascu NcMBeERr-Pair Is ONE PERsoN

Let’s see whether we can locate a point on the board in the same way.
This paper will help you do the same thing at your seats. (Handed out
graph paper.) It is called graph paper, or quadrille paper, or cross-ruled
paper.

Let’s draw a line down the middle of the paper and another across
the middle. (Teacher demonstrated on graph board.) These two lines
are called axes, ‘The Y-axis is the vertical one (teacher showed) and the
X-axis is the horizontal one (teacher showed). These axes are marked
off in units, like this. Most people who work with these a great deal,
like scientists, engineers, draftsmen and navigators, make every fifth
line a bit longer, like this. This point, the zero-zero point, is called the
origin.

How many nnmbers do you think will be needed to find a single point
on thix graph board? [I'wo.] Very good. Suppose we agree that the first
number I call is the r-value or r-coordinate, and the second is the y-co-
ordinate. Just remember that we are calling them in alphabetical order:
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first .r, then y. What does (3, 2) mean? [x = 3, y = 2.] Will someone come
to the board and show the class where this point is? (The teacher drilled
using points in all quadrants.)

How many numbers are required to find a point? How many numbers
does each point have? (The teacher went back to Board I and altered it:
see the diagram.)

Finding the position of an object is an important use of this method,
but there is another use even more important. We can actually show
relationships between numbers! Let’s go back to your row-and-seat co-
ordinates for a moment.

If your first co-ordinate, K, equals your second co-ordinate, S, please
stand and remain standing. (On Board II, the teacher wrote R = S).
(One pupil made a mistake; the class noticed this immediately. The error
was used to emphasize the fact that a straight line was formed.) What
does this figure look like? [\ straight line.] Now let’s go back to out
graph chart. Which axis is like the row-axis? [The X-axis, or the one
across?] Which axis is the seats-axis? [The Y-axis] (On Board II, under
R = 8, the teacher wrote x = y.) Instead of B = S, suppose you were
asked to draw the picture’” of * = y on the blackboard. What do you
think the figure would look like? [A straight line] Will someone come to
the blackboard and hold this yardstick aeross the graph blackboard
where he thinks the line would be? (A pupil did it incorrectly.) Well,
that’s the right idea! Let's check. Will you choose a pair of equal num-
bers? You? You? (Meanwhile, on Board II, the teacher made a table of
values.) Turn your graph paper over and prepare it for a graph by
drawing the axes and showing the units. (The teacher did the same thing
on Board I1.) You see, in this table of values, pairs of numbers. When
vou think of & number-pair, what comes to mind? [A point.] Let’s locate
the points which we have already described. (One pupil did it at the
hoard while the others did it at their seats.) Do you know now how the
straight s should be drawn? (The class raised hands frantically.)
Let’s do 1. ZOne pupil was sent to the board to doit)

How many number-pairs did we use to draw this line? {Four.) Suppose
we had only three number nairs, (The teacher erased one point.) Wonld
we still be able to draw the same line? Suppose we took only two number-
pairs? one number-pair? (A pupil said that you needed two number-
pairs becuuze otherwize there would be no place to place the other end
of thernler.) How many points, then, do we need to deaw the line? [Two.]
How many points did we have before? {FFour.] Wonld it be possible to
have more points on this line? [Yes.] Will you suggest another point
thee must be on this line? [(5, H); (6, 6).] Are there any equal fractions
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that could be on this line? {(1, 2, 1,2), (1,3, 1, 3).] Are there any mixed
numbers that could be on the line? (The teacher explained what mixed
numbers were, and the class supplied many points.)

lHow many points are there actually on this line? [Indetinite, a lot,
“infinite.”] Suppose we choose any point on this line. Will you come to
the board and put your finger anywhere on the line? What are the co-
ordinates of this point? {It’s about (4}, 41).] What is true about those
two numbers? (They're equal.] What is true about every number-pair
on this line? {The numbers are equal.]

Now here’s a hard one. Suppose we choose a point not on the line, like
this one, (4,2). Are the numbers equal> What can you sav about any
point not on the line? {The numbers are not equal.] Supposc I mention
a number-pair like (3,5). Can you tell the class, without looking at the
line, whether this point will be on the line? [It won’t be on the line because
the numoers aren’t equal.]

You did so well with that, let’s try another relationshin. We can use
the rame set of axes. I'm thinking of a number that’s double another
number. Can you think of a pair of numbers like that? (()n Board II
the teacher made a table of values as the number-pairs were offered.)
When you see pairs of numbers like these, what do you think of? [Points.]
These points happen to lie on a straight line. How many of them do we
need to actually draw the straight line? [I'wo.] True. 1'o be sure, a good
mathematician usually takes three points. The third point is taken to
check the first two. On our table of values there are seven pairs of
numbers. How many points are represented? [Seven.] Choose any three
and plot the straight line on your own paper. (‘The teacher went through
the room and finally chose a student to plot the locus on the blackboard.)

Suppose we chose any other point on this line. What would you expect
the relationship would be between the two numbers? Suppose a point is
taken which is not on the straight line, what would you expect the
relationship to be between the two numbers? Suppose a pair like (—3,7)
is chosen. Without trying-—Is this number pair on the straight line?

These straight-line graphs are called linear graphs, and the relation-
ships that give you linear graphs are called linear equations. One example
of a linear equation was y = x. What was the other? [y = 2z.] Not all
equations are hnear. At another time you will study graphs which are
not straight lines and also straight-line graphs which do not. go through
the origin like these two.

Summary: Let’s put together what we have learned today. How do we
represent a pair of numbers on the graph? How many numbers are
attached to each point on the graph? How do we represent a linear equa-
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tion like ¥ = 2? What do you call the two straight lines that are drawn
before the graph is drawn? [Axes.] How many pairs of numbers do we
need to have to draw a straight-line graph? What is the third pair of
numbers used for? Suppose we took any pair of numbers whatsoever.
Would the point necessarily be on this straight line? When would it be
on the line? When would it be off the line? Suppose I chose any point
on the line y = 2z. What would be the relationship between the two
nnimbers? Suppose I chose a point not on y = 2r, what could you say
about the relationship between the two numbers?

Why do vou suppose that the straight line y = 2z is often called a
“picture” of the equation y = 2r?

Plan for Board Work:

Board 1 Board 11 Board 111

Y-axin
POINT ¥ ) S
" EACH USSR 1~ A NUMBER-PAIR -

POINT SRS
EACH NUMBER-PAIR I~ A JEASPR
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axes &
o

unus

-
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table of values

1
!
N
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linear '3
_equations —.

X-axis

VARIATIONS ON THE BASIC PLAN OF INSTRUCTION

Special-Purpose Lessons. Although education texthooks com-
monly differentiate between lessons with words and phrases like
“supervised study,” “laboratory,” ‘lecture,” ‘‘heuristic,” ‘‘ac-
tivity,” “recitation,” and the like, there ix probably no important
difference between any two of them so far as learning, itself, is
concerned. The learning of mathematics is, after all, a purely
mental phenomenon. The physical activity which takes place,
whether it involves teacher activity, pupil activity, or the activity
of mechanicul devices, is of no importance except as it contributes
to mentat activity.
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It would seem to be much more realistic to differentiate lessons
in accordance with their main purposes. For example, the first
lesson in a certain topic may be an introduction designed to
motivate the series of lessons, rather than to convey information;

I. In order to introduce indirect measurement in un elementary alge-
bra class, the teacher took the class to the baseball diamond where the
period wus spent planning a scale drawing of it. This led to a study of
simtar figures,

2. Tn order to introduce areas, one teacher spent the entire period in
paper-cutting exercises. Having taken the area of a square by postulate,
the class wax able to develop, empirically, the formulas for triangles,
parallelograms, trapezoids, and regular polygons. The class was pre-
pared for the proofs to be attempted in the next two weeks.

3. Tnorder to introduce logarithms, the teacher had committees report
on compitting machines. This empbasized the need for efficient methods
of performing mathematical operations,

The =pecial purpose of a lesson may be to amass data. An ex-
perimental or laboratory type of lesson seldom vequires any special
motivation since the novelty (in mathematies) of this approach
exeltes the eurtosity of the student. The result of the lesson is
usnally a collection of data which mayv have » more or less scien-
titie use,

As un introdnction to the use of trigonometrie tables, the class con-
strnets, using protractors, angles at intervals of five degrees. The sides
of the triwngles formed are measnred with seales, and the sines, cosines
and tangents recorded in i eluss table of trigonometrie funetions.”

A special lesson may be devoted to drill. This is vsually called
a review” losson, although there s no distinetion between ‘‘re-
view" (as the word ix usnally used) and “drill,”" as it has been
illustrated in this echapter.

1. In preparation for an examination, the teacher distributes copies
of previons examinations, The class works on thewe,

20 After o study of trigonometry in the elementary algebra class, the
tescher takes the elass out to survey a lot, Vhe application of their
knowledge constitutes a review,
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In some cases, the class may spend an entire period in catching
up on homework.

[t is readily seen that these special-purpose lessons are, in
reality, sitnilar to the basic lesson. In these lessons, however, some
features huve been repressed or eliminated, while others have
been emphasized.

(iroups of Lessons. There is something to be said for a fixed
routine in teaching. A pupil who leaves Mr. X at the end of Plane
Geometry 1 and goes to Mr. Y is often heard to mutter that he
was just getting used to Mr. X's method. Routine lends itxelf to
placid class munagement and thus tosters class discipline.

However, placidity is not an aim of mathematies instruction.
Learning takes place because of the disturbance of tha2 pupil’s
pattern. The teacher can increase this disturbance by including
in his repertory of motivations the variation of lesson pli.ns.

One eusy way to do this is to plan lessons in groups. The first
lesson may, as a whole, correspond to the first part of a basic
lexson; the last lesson may, as a whole, correspond to the terminal
summary; and there may be one or more intermediate lessons
corresponding to development and drill:

A teacher planned a group of five lessons on the slide rule. The first
lesson consisted of committee reports on the history of the slide rule and
an exmbition of various types of slide ruies. The second lesson was a
show g of tilms on the slide rule, followed by a discussion of the films.
The tmed lesson was one m which the teacher demonstrated on a large
model while the elass operated their own slide rules. The fourth lesson
was drill on multiplication and division. The fifth lesson was a test last-
ing 20 ruinutes, followed by a review of the test.

Most of the special -purpose lessons are parts of a group. For
example, film lessons are always preceded by an introductory
lesson and followed by a drill and summary lesson. Supervised
study lessons are motivated in somie manner, then foliowed by
recitation or test (summary). l.aboratory lessons are introduced
by uiwther lesson showing the need and purpose of the experi-

wntal work, and followed by one or more lessons exploiting the
data amassed.

The experienced teacher will eventually come to regard the
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enti v .nester’s lessons as a group. This is obviously the psy-
che ..cal operation of integration acting upon the teacher. With
this in mind, it is easy to see why the opening lessons in any
course are heavy with motivation, whereas the closing lessons are
of the review and terminal summary type.

CONCLUBION

In this chapter, the theory and practice of planning instruction
has been described and illustrated. The method has been shown
in detail for explanatory purposes. Individual users of the method
will readily see how to shorten it for their own purposes. The
plan may be written (and should be, for new teachers) or may, in
many cases, be carried mentally. The method of planning may be
applied to individual lessons, to groups of lessons,-or even to the
lessons for an entire course. The psychological justification for
each step was given in terms of modern psychology.



11. lLearning Theory and the Improve-
ment of Instruction—A Balanced Program

JOHN R. CLARK AND Howarp F. FEHR

WAYS TO IMPROVE INSTRUCTION IN MATHEMATICS

No PHYSICIAN is worthy of his profession who is not continu-
ously improving his knowledge of prevention and cure of diseases.
As new knowledge and procedures are proved, the physician ab-
sorbs them into his practice, changing his techniques and ad-
ministering new and more potent drugs, to the benefit of his
patients. And so it is with law, scientific research, engineering,
and all other service professions. In similar manner in ' ~ profes-
sion of teaching, the alert minded teacher seeks coir antly to
improve his instruction. Real mathematics teachers desire that
their students, through proper and good instruction, become
better prepared than in the past, to take their places in demo-
cratic society.

There are numerous avenues which a teacher can follow that
will lead to improvement of instruction. The top-grade teacher
will eventually have traveled all of these paths. One avenue is
the study of society, its history, its development, its probable
future status, and the role that mathematics plays in society.
What is it that makes a society, and how does man function in
this society each 24 hours of his life? How do you, I, and all others
in the various careers react to one another? How do we carry on
our physical, social, intellectual, and esthetic relationships? How
can the school, and the mathematics instruction in particular,
prepare youths to take their places in this society according to
their several talents and interests? The study of these questions
can provide tentative answers pertinent {o the improvement of
mathematical instruction.

Another avenue, not always too well traveled, is the study of
mathematics --the knowledge of the field wherein we instruct.
Not only is such knowledge being extended daily, but any new

335
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study of previously pursued knowledge results in new insight,
new discoveries of facts and relationships, and with this a com-
mand of our field of instruction that creates a genuine feeling
of confidence and authority in the knowledge we impart. Today
teachers of mathematics must know more mathematies, and more
about its application to acronauties, transportation, navigation,
finance, and economies than ever hefore. This means we must con-
tinue ax scholars within our field from arithemetic (o the most
advanced structures of mathematical knowledge. This study can-
not help but have an effeet that will change the stress and the
material we use in our teaching, and thus improve the attainment
of goals more consistent with modern living.

There is the avenue of self-study, by reading. in modern
thought. Too many mathematies teachers are narrow in their
reading. They should come to know the modern thinking in phi-
losophy, anthropology, physiology, geography, statistienl meth-
ods. physies, and in general all those areas of knowledge that
study human individuals ax elements of larger populations. Four
five, or even six years of college training can no longer he con-
sidered sufficient to provide complete preparation for teaching.
So long as new knowledge is being developed m fields related to
his profession, the teacher must be alert to its implication for hix
instruction in mathematies. A teacher, well-read in the other great
areas of human knowledge, gains a perspective of the place of
mathematics that puts it in proper focus in the whole eduecational
prograni,

Many other avenues lead upward, in particular the fields of
guidance and evaluation. What mathematies is a child at a given
stage able to learn? How can this instruction be made available
at the proper time? How much mathematies should a particular
individual study, and what are the eriteria that determine the
type and the amount? At any given stage. how can we tell what
achievement a student has actually attained in skills, in concepts,
and in problem-solving? The study of proper guidance and evalu-
ation can give insight into needed curriculum and teaching pro-
cedures that ean produce better mathematical learning, better
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adapted students, and happier ones. Guidance and evaluation
will contribute much to the improvement of instruction.

Another avenue is the study of human growth. Each succeeding
vear we learn more and more from biologists and psychologists
of the physicul and mental changes that take place as children
grow into adolescents and into adults. The teacher seeks to know
more of the causes of certain emotional behaviors, of the develop-
ment of attitudes toward things and toward other people, both
classmates and adults. How do certain likes and dislikes of the
oppusite sexes develop, and how will we secure good social be-
havior as the voungsters grow up? How can we increase the feeling
of sympathetic personal relationship between student and teacher,
a feeling xo necessary in developing the personality of our youth?
With increased knowledge of physical and psvchciogical change in
maturing youth, there is bound to be change in our procedures of
instruction that will result in improved educational outcomes.

Closely paralleling the avenue of growth is the one with which
this book has been concerned, the study of how we learn. In the
analyvsis and rethinking of the preceding chapters, the teacher
must continually bear in mind that the presentation is only one
of the many avenues to better mathematics teaching; that is, an
avenue cutting across all the other avenues of improved instruc-
tion which must be related to them at all times. Eventually the
teacher must create a balance among learning theory, subject
matter, the student, classroom practice, and educational goals.
Thiz balance can come only through study and experience,
through knowing and applying that ix, through creating a be-
havior, a wav of acting, that responds naturally and efliciently to
mathematical instruetion. This chapter is concerned with showing
how learning theory can be integrated with the other aspects of
instruction.

MEDIA OF COMMUNICATION IN LEARNING THEORY

The literature and addresses on mathematical education are
replete with terms of psyehological implications. We read of atti-
tudes, appreeiation, mental ability, memory, forgetting, associa-
tion. thinking. and concepts. In many cazes no attempt is made
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to define these words, and as a result there is vagueness and mis-
understanding in the interpretation of the writing and the speak-
ing. Thus learning can be conceived of vaguely as something that
takes place in classrooms or in laboratories, or as acquire:d knowl-
edge, or as something else. To avoid such ambiguity and to pro-
vide media for accurate communication in the theory of learning,
it is necessary and sufficient that the terms used convey unique
meanings in given contexts. This meaning should be common in
the minds of all who hear or read the word to the extent that
discussion or conclusions involving the concept can be carried on
in a rational manner. Without such understanding, it would be
impossible to put the psychological concepts to effective use in
classroom instruction.

This book has provided the clarification of most of the terms
used in psyehological discussions on learning. By accepting the
definitions, descriptions or illustrations herein presented, we have
a medium for eflicient communication of our ideas about learning.
Other definitions could have been given, but those used in this
Yearbook are either commonly accepted in education, or are
the emerging concepts in modern thinking about learning. Thus
when we xpeak of learning, we mean a definite change in behavior
of the organism. Attitudes are not habits, but they are a developed
set of the entire organism that makes it act or tend to act in a given
way, when confronted with a given situation. Rimilarly, when
such words ax goal, skill, concept, motivation, problem-solving,
drill. interest, and such arise in conversation, or in reading, they
should convey the fairly exact meanings that have been estab-
lished in these pages. For the purpose of studying learning it is
ax necessary to have these commonly accepted meanings of psy-
chological terms as it is to have common concepts of geometrical
terms in the dixcussion of properties of space.

‘Thix Yearbook has developed and clarified the meanings of
the symbols and words used in learning theory. We now know
what it ix we are communicating, even though we do not know
the complete nature of the concepts we use.

The interrelationships of the aspects of learning concern us.
In most units of instruction the teacher is nware of the importance
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of sensory experience, concepts, language, skills, problem-solving,
motivations, individual differences, and transfer. He knows that
these aspects of learning are interrelated and that there is no
fixed sequence in which they are to be considered. Teachers differ
greatly, however, in their points of view concerning the relative
importance of emphasis to be assigned to each. First let us re-
examine these aspects of learning.

What is the role of sensory experience? To one teacher (per-
haps in the primary grades) it is to help the pupil in building con-
cepts, in discovering facts or relationships; it is the initial step in
proceeding from the concrete to the abstract. To another teacher
(probably in solid geometry) it is to show, to illustrate, to make
concrete that which the pupil already has learned. Obviously
many sensory aids may serve the purposes of both types of teach-
ers. In general, the teacher whose objective for using sensory
experience in a particular learning situation is clearest will make
the best selection.

In Chapter I1I we saw that effective learning requires the build-
ing of ever wider and broader concepts. The concept of a division
as part-taking must be extended to include division as comparison.
The once separate concepts of division and fractions must be
merged. The concept of integral multipliers must be extended to
include fraction multipliers. The teacher of algebra carefully ex-
tends the concept of exponent from positive integers to zero, to
negative integers, to fractions. Progress through algebra may be
described as an extension of the concepts of arithmetic. The ex-
tension of the concept of ratio from “total distance traveled di-
Az
ay
meaning of broadening a concept. Clearly, mathematical learn-
ing is of necessity concerned with extension of concepts!

The interdependence of language (words, signs and symbols)
and thinking was analyzed in Chapter V1. Through effective
association of language and experience, one ultimately learns to
work with ideas. What the pupii does and says and hears (and
reads) in connection with finding the height of the school flag-
pole by indirect measurement determines his concept of ‘‘tangent

vided by distance traveled in a unit of time” to — dramatizes the
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of an angle.” He estimates its height, measures the length of its
shadow and the angle of elevation of the sun, notes the right tri-
angle, makes i xcale drawing of the out-door-triangle, uses a nota-
tion for the triangle, me asures the line in the drawing which cor-
responds to the height of the flagpole, compares, by division,
BC with AC, finds that BC is about 1.7 times AC, and concludes
that the flagpole is about 1.7 times ax long ax its shadow. Stra-
tegic in this total experience are the words and /or symbols: height
of Hagpole, length of shadow, angle of elevation, ratio of BC to AC,
the xide opposite the 60° angle divided by the side adjacent to it,
1.7. Then, after skillful guidance, the learner senses, understands,
and says, “In any right triangle having a 60° angle, the ratio of
the side opposite the 60° angle to the side next to it is approxi-
mately 1.7."” Finally he is ready for the svimbolic statement
“tangent 60° = 1.7." Clearly, experience activitics and properly
associated words are essentiai to the building of new concepts.

The teacher chooses the vocabulary best suited to create the
new concept. For another illustration consider the building of the
part-taking concept of division. The teacher uses carefully selected
words as “share equally,” “dealing out,” “divide equally among,”
“finding the size of each of a given number of equal groups,” and
other carefully selected words. He avoids using the voeabulary of
the measurement concept: compare, measure, how many times,
what part of, finding the number of groups of a given size, the
divisor goes into the dividend, and other words of measurement
concept. .\ concept emerges from a variety of arefully selected
languages of 4 context.

But mathematical learning involves skills as well us coneepts,
The aequisivon of skills in performing operations is greatly facili-
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tated by understanding the concepts of the operations. The tech-
nique of “‘carrying’’ in addition becomes rational as a consequence
of the associative principle. Obviously skill in mental addition is
casily acquircd by the order of addition shown in (a). The order
of addition shown in (b) easily leads to an understanding of the
technique of carrying shown in (c).

(a) 27 (b) 27 (e) 27
15 15 15
60 12 72
12 60
2 7

The pupil who considers addition as a process of putting to-
gether like groups and who thinks of a fraction as ‘“‘one or more

of the equal parts of a whole” will convert% + -g—to -g— rather than

to 1_66 Skills operating without the guidance of concepts often lead

the learner astray.

Recently, inquiring teachers have been engaged in a “‘why-
how” or “how-why” controversy. Which does come first, the con-
cept or the skill? Or do they grow somewhat simultaneously?
Available evidence indicates that skill learning should follow if
not accompany concept learning. The older practice of empha-
sizing skill learning with little emphasis upon meaning led to the
justifiable criticism that instruction was mechanical, that pupils
learned the how without the why. Fortunately the influence of
the field psychology, with its emphasis upon concepts and re-
lationships, is increasing.

Students of mathematics education agree that power, ingenuity,
resourcefulness in problem-solving is a major objective of in-
struction. They interpret problem-solving as finding by reason-
ing a satisfactory response to a situation which is novel, for which
there is no available recalled response. In geometry a problem is
presented when the pupil wonders whether two sides of a tri-
angle are equal, if the angles opposite those sides are equal. Or,
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“*Can I show geometrically that v/ab can never be greater than
a+b
2

-

formula A = bh, is increased 25% when b and / are each increased
25%, is confronted with a problem. And in sixth-grade arithmetic,
the pupil who would like to know how many apples he would have
to buy at 3 for 5¢ and sell at 2 for 5¢ in order to make a dollar,
has a problem. The adult who wonders what rate of interest is
being paid when a refrigerator which can be bought for $200 cas!.
is bought by paying $20 down and $20 monthly for 10 months is

face to face with a problem.

2" In algebra the pupil who wants to know whether .4 in the

[/

Q 0
Ry ——— authee

Now let us examine the solution of the second geometry problem
a+b
- 2
interprets va) as the geometric mean of a and b, may think of a
right triangle inscribed in a semici~cle (the situation in which he
first met the concept of geometric mean). Thus the altitude PQ
. b .

is equal to v/ab. But what about the — ;‘ ? Oh yes, that is half the
diameter; it is equal to the radius, PO. Obviously now PQ <

PO, and hence vab = 2 '2*- b

stated above: Can v/ab ever be greater than ? The pupil who

. The secret to the solution lies in

a+ b

seeing how, in what context,\/ab is related to

In general the secret of success in problem-solviug is in seeing
how what one wants to find is related to something in the problem
situation that is known. Reasoning means discovering heretofore
unrecognized relationships. The more relationships one knows,
the less likely he is to have to resort to reason in successfully
responding to a new situation. It must be apparent that recurring
problem situations cease to be problems; the learner is able to
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recall the relationship required to solve the problem. Effective
teaching transforms problem situations into familiar situations
to which the learner responds without delay and without con-
fusion.

Learning does not take place without a challenge. Doing the
same thing over and over ix not changing behavior. A student
must continuously be faced with p.oblems. This means the class-
room situation must be earefully planned day by day so that new
andd more advanced aspects thut not too advanced) are being
faced by the students. Iiven a review lesson should contain the
coneepts to be studied in new and varied siutations. The meas-
urement of an angle by the ares in which it intersects a circle can
be studied in terms of positive and negative arcs as suggested in
the figures below.

e

The relationship between positive and negative numbers, and
positive and negutive arcs as shown in the above figures is not
apparent to all studerts. We cannot expect that all children will
discover relationships entirely on their own initiative. For most
students learning needs direction. If students are not making pro-
gress we give clues. To give the right kind of clues is skillful teach-

N
ing. Perhaps a sentence “Let us agree that if AB is positive then
N

A'B’ will be positive only if it takes the :ame circular direction”
will be sufficient for some students, but for others even stronger
clues are necessary. Students should not be left entirely free to
recapitulate the entire development of the human race; the teacher
can guide them past unnecessary pitfalls. All that is essential is
that the desired organized pattern of behavior (learning) must
eventually be made by the learner for himself,

There i< no one formula or procedure for problem-solving. Fre-
quently the pupil discovers the strategic relationship needed to
solve an algebraic verbal problem by assuming an answer, and
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checking it against the given conditions stated in the problem.
Thus, in the problem: “A merchant bought 12 dresses, some at
$8 each, and the remainder at $6 each. The 12 dresses cost $80.
How many of each kind (price class) did he buy?" The pupil,
seeing that the merchant must have bought less than 10 dresses at
88 each, may guess 5. Checking: 5 dresses at $8 ecach cost $10, the
12 — 5, 0or 7 dresses at $6 cost $42. But $40 + $42ix $2 too much.
Hence, replace one of the $8 dresses with a 86 dress. Actually the
learner assumed for the moment that he bought 5 of the $8 dresses
and determined, by using the conditions of the problem, that the
guessed answer must be 5 — 1 or 4 of the $8 dresses.

Even though the solution of a problem often appears to come
quickly as a result of sudden insight, it is more likely the result
of analysis of relationships than the product of trial and error.

There are many correct, if not equally good, methods of problem
analysis. In the apple problem, previously stated, one solution
involved finding the profit on one apple (53¢ —54¢ = 54¢) and then
dividing the desired profit, 1004, by the profit on one apple. An-
other solution, more mature and ingenious in conception, first
finds the profit on a group of apples (6 or 12 or any small multiple
of 2 and 3). If a group of 12 be chosen for study, the profit would
he 10 cents; for a profit of 100 cents, 10 such groups would have
to be bought and sold.

A less mature, more stereotyped solution is likely to be proposed
by pupils in the algebra class: Let z represent the number bought;
then $3z is the cost and so on.

Pupils achieve greater power in problem-solving by proposing
and evaluating alternate methods of ~olution of a limited number
of problems, than by solving a greater number of problems by
any one pattern of analysis. Teachers of geometric “originals”
have long been convinced of this belief.

Our students should not only be able to reason and to solve
problems, they should come to enjoy them. No teacher is unaware
of the potency of interest or motivation in promoting learning.
Pupils learn best when they want to learn, feel a need for learning,
when they are curious to find out.

Psychologists are skeptical concerning the existence of special
aptitudes for mathematics rather than another school discipline,
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but they are certain that for motivation nothing succeeds like
suecess in thinking. The pupil who fails three or four times out
of five tries soon loses interest; the pupil who never fails soon finds
no challenge and loses interest; but the pupil who succeeds three
or four times out of five tries likes the adventure and wants more
of it.

The teacher who likes mathematies, who is able to arrange
learning excrcises of =uch difficulty that the pupil experiences suc-
cess more often than failure in his thinking, and who exhibits
genuine pleasure when the pupil succeeds, need have little con-
cern about the problem of motivation. Successful intellectual be-
havior generates motivation.

A group of pupils, as well as the individual pupil, thrive on
success. Giroup thinking (currently known as group process), with
little apparent direction of the teacher, creates interest and gives
to each member of the group a sense of belonging and achieve-
ment. The traditional recitation (question by teacher, res; nse
by a particular pupil) is replaced by discussion, planning, apprais-
ing, by procedures in which the individual pupil contributes ac-
cording to his interests and talents.

The two preceding paragraphs contain far-reaching implications
for handling the problem of individual differences. Few teachers
today would wish to replace group instruction by tutorial in-
struetion. They prefer, instead, to replace random (alphabetic,
often) =clection of groups having a wide range of ability and
achievement. with more homogenous groupings. Instructional ma-
terinls as vet are inadequate for meeting the problem at any grade
level.

Teachers know that very few of the problems with which a
learner may ultimately be confronted can be considered in school.
‘Thus they constantly turn to the psychology of transfer for guid-
ance in making the learning as general as possible. The psychology
of transfer of training" is replete with implications for the teacher
of mathematics. In order of their extent of transfer, skill learnings
rank lowest. Concepts are susceptible of significant transfer. Most
widelv transferable however are the attitudes, likes or dislikes,
confidence or inseeurity, the emotional concomitants.

And the least enduring learnings, those eroded most by disuse
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and forgetfulness, are the skills, the facts, the techniques of mathe-
matics. Concepts are far more enduring. Years after a successful
experience with deductive proof in the secondary school the adult
retains his concept of proof. But most permanent are those aspects
of learning which we are wont to call appreciation, pleasure,
frustration, attitude. How a pupil feels about his course in geo-
metry for example may significantly affect his adult behavior as
a parent, or as a member of the board of education.

SOME PRACTICAL CONSIDERATIONS

The arrangement of the chapters in this book was not without
purpose. There was first presented an orientation to the general
theory of learning—experience within the field being studied.
Then some of the main elements of the field-motivation, attitudes,
concepts, and sensory impressions were treated so as to give
deeper insight into learning. The relationship of these elements
through language, practice, and transfer, paved the way for a
re-examination of learning as problem-solving. In order to prevent.
any misinterpretation of learning as unguided experience of nov-
ices, the particular precaution was taken to show the need for
providing for individual differences and for growth through
planned instruction. This final chapter has been concerned with
creating a total picture of these aspects of learning—their inter-
relatedness—to enable the reader to achieve a rather complete
and balanced configuration that can aid in adapting learning
theory to good classroom practice. To avoid some possible gaps
or flaws, a few further practical considerations seem pertinent.

Children do not grow and develop in mathematical knowledge
in a vacuum of such knowledge. Quantitative thinking is acquired
in active mental dealing with quantitative situations. The quan-
titative aspects of a situation can go unnoticed unless they are
deliberately brought to the sphere of attention of the student.
In the study of health, cost of medical care, cost or nature of
medical insurance, span of life in various occupations and sections
of the country, the relation of climate conditions (quantitatively
measured) to types of diseases, and so on, are the means of insight
to the need for mathematical learning. The necessary mathemat-
ical concepts and skills in treating such problems must be devel-
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oped by actual experience in organized, planned mathematics
instruction. The child grows and develops in a numerical and
geometric environment in which he changes his behavior to ever
more complex organized patterns.

But progress is not made along a straight line from the funda-
mentals to the generalized theorems. This is the way the final
learning can be organized, and is frequently so organized in texts,
but it is not the way most students grow in wisdom. Our initial
learnings in algebra are not Peano's axioms, nor is our initial
learning in geometry Hilbert's postulates. Rather the initial learn-
ing is in an area in which exploration first takes place. We count,
measure, draw, and make preliminary statements which are re-
fined downward toward the foundations and upward toward more
abstract, complex, and zeneralized relations. After a while we dis-
card many particular theorems for one more generalized theorem,
and in advanced stages of learning only is the area of exploration
reorganized as a straight line mathematical development.

The growth in mathematical knowledge by each individual
student thus calls for direction by a skiliful teacher who has a
balanced emphasis on the various phases of learning. He uses the
heuristic method only so far as pupils need directed questions in
the quest of their learning. He has an experimental attitude that
allows freedom of approach in learning to the degree that the
experiment is headed toward a desired concept, or relationship,
and directs the experiment back to fruitful approaches when the
student is adrift. He recognizes that drill can be dangerous and
boring as well as good habit formation procedure. He balances
each step from concrete experience to semiconcrete representa-
tions, to words and symbols, to generalized abstract theorems
through proper evaluation and by appropriate attainable chal-
lenges. He also recognizes that not all learning begins in concrete
material objects, but that much new learning may start in already
learned abstractions. Thus algebraice fractions are referred back to
the abstractions learned in the study of arithmetic fractions and
not back to parts of concrete objects. Geometry is reluted to
geometrical drawings, trigonometry is related back to geometry
and algebra.

It 13 just because of this sequential aspect of mathematical
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kno“ledge that proper balance becomes the all important aspect
in its learning. Cnless a clearly and correctly formed mathematical
concept emerges from a learning situation and it is related to other
phases of already learned mathematics through sufficient practice
to gain skill in the use of the concept, the learning of all later
mathematics dependent upon this concept is seriously (and some-
times totally) impaired. The lack of correct concepts in uarith-
metic may be one of the great reasons for the difficulty algebra
presents to so marn;, of our students. It is this balance that is
indirectly referred to in every chapter in this text: a mathe-
matical problem within the comprehension of the student, but
still a problem as the start of learning; motivation, \uthuent to
send him on toward the solution; the challenge to abstract, to
generahize, to form conceptx; the proper use of sensory aids, of
drill, of appropriate language; not dcing too much nor failing to
do enough; and adapting these measures to the various individual
differences in learning. To gain such balance is to become a master
teacher the goal of all professionally-minded educators.

It should be evident by now, that the position taken by this
book is: We learn that mathematies which we are taught. The
teacher is the primary agent and force in the learning that takes
place. The teacher ix all important. There are xome persons who
say one who knows cannot teach for he cannot fathom the dif-
ficulties of his students. These persons say that as a teacher works
with hix students through a problematie situation which is new to
both teacher and students, real learning takes place and then only.
We believe this axsumption to be entirely erroneous and assert
that a teacher is a learning engineer, a builder of minds that will
=olve problems. As such, the teacher must first know the total
mathematies he will teach, that is the framework, the facing
nmuterinl, and all the interior finishings to make the structure
complete. But he must also know the stresses and strains the
foundation and framework must support, and how the whole
structure of mathematics is put together in the minds of his stu-
dents. Thix story of mental construction has been put forth in this
hook ax a practical guide to the classroom teacher. the learning
ongmc er. It i the teacher who ix responsible for planning, design-
ing, blueprinting, constructing, finishing, and putting the final
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product—a problem-solvmg mind in the realm of quantltatlve
thinking—to effective use in society.

It was shown at the opening of this chapter that there are many
avenues to improvement of instruction. How we learn is only a
part of the whole organization of teaching. We must weigh its
importance in its relation to the other avenues of learning. Also,
the present theory and practice of learning is not a fixed body of
knowledge of the type one finds in certain mathematical disciplines
such as plane Euclidean geometry. Until we know more, we must
conceive of vhe aspects of learning—motivation, analysis, transfer
of training, and practice—as fluid elements, as tenative workable
explanations of a theory of learning. When we gain more knowl-
edge of the operation of the brain, and of the manner in which
human hehavior is changed, these various aspects may shift posi-
tion, change in their importance, and even new elements may
enter the picture. The alert teacher will be on the outlook for new
developments and new interpretations and balance them with
his present conception of how learning takes rlace, a concept that
this book has given.

Thus in a sense the teacher must be a master technician. He
must know how to build any known kind of learning. But he
also must be a philosopher. He must decide what kind of learn-
ing is of most worth. He must weigh, balance, and appraise the
possible learnings. He must know their relative worth both for the
individual and for society. He is at the moment following the
recent discoveries in psychology, in the process of readjusting his
thinking about the relative emphasis to be assigned to skills,
concepts, problem-soiving, and attitudes. We predict that instruc-
tion in mathematics for general education will come to rely more
and more upon the implications of the following:

Learning is thinking.

Successful thinking is possible at any grade or achievement
level.

Successful thinking is heavily dependent upon concepts and
relationships.

The satisfactions following successful thinking provide enduring
enrichment for the learner.
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active role of, 84-83

passive role of, 84
Individual differences, 271 ff.

udjusting to, 273

history of, 271

in grouping, 345

in problem-solving, 251

table of, 274

traits, 271

variation in grade, 272
Induction, 260
Inhibition

associative, 12
Insight, 19
Instruction

improvement of, 333
Integration, 322
Intelligence

as adaptation, 4

as understanding, 4

distribution of, 275-77

niechsaical, 3

nature of, ¢ ff.

social, 5
Interests, 45. 51

Lauguuge
examples of strength, 157
examples of weakness, 156-57
in concept buiiding, 340
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in mathematics, 156
in thinking, 339
mathematical, 158
Language symbols, 92
Law
of analysis, 14
of effeci, 13
of exercise, 14
of readiness, 14
Laws of psychology, 312
Learning
animal, 10
areas of agreement, 29
as analysis, 19
connectionism, 16
creative, 37- 39
definition of, 99
diagram of, 7, 37
directing of, 343
end-products, 9-10
enduring, 346
explanation of, 32-37
general principles ot, 30-32
gestalt, 20-22
levels of. 27N
problems of, 40
study of, 1, 2, 337
theory of 1 .
Learning sids, 34
Learning mathematirs, 24 ff.
Learning situation, 67
Lesson
basic, 304
drill, 332
example of, 327-30
types, 318
Lesson development
logical, 319-20
psvehologieal, 319
Lesson planning, 331 ff,
Lesson plans, 303-304
complete, 3°5-27
Lessons
groups nf, 333
special purpose, 331
Levels of learning, 279-80, 285
Library
use of, 222
Linear equations, 202

Maps, 178
Marks
as evaluation, 61
as incentives, 60-61
Mathematical knowledge, 347
Mathematics
as thinking, 158-59
study of, 336
Maturation, 212
Meanings
by agreement, 164
example of, 76
in motivation, 63-64
meaning of, 70, 75-76
of a problem, 248
of mathematical terms, 166
~f symbols, 160
Meniorizing, 104-105
improvement, of, 144
Mental association, 9
Mental concepts, 106
Modern thought, 336
Motivating
criteria for evaluating, 65-66
Motivation,
definition of, 104
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examples in lesson planning, 313 -15

improvement of, 143

in mathematics education, 42 ff.

planning of, 310-11
Mntives, 43

acquired. 43

inhorn, 43

useful in teaching, 44
Motor skills

development of, 117

examples of, 117 ff.
Multiple solutions, 263
Multiplicity of meaning, 164
Multi-sensory aids, 86-87

Natursal closure, 312

Need, 7

Non-academie courses, 301
Non-verbal signals, 160
Number concept. 87-88
Number ideas, 91



354

Objectivea

of lesson, 307-308
Order, 58

of concept formation, §5-86
Orientation to problems. 252
Organizsation of relationships, 35

Perception, 102
improvement of, 140
of movement, 14243
patterns of, 102-103
Perceptual diserimination, 120
Perceptual illusion, 125
Perceptual-motor skill, 9
Planned instruction, 303 ff,
Plagning
need of, 303
relation to psychology, 306
Planning instruction, 304-305
Practice, 192
Pragmatic dimension, 70
Prediction, 267
Pre-equation learning, 201
Preparation stage, 38
Problem
analysis of, 344
clarification of, 239
definition of, 228
individual meaning of, 238-39
meaning of, 230-31
orientation to, 237 ff.
solving of, 229
Problems
adaptation to levels, 283- 34
funetion of, 234-35
number of, 233
Problem situation, 7, 32, 37
Problem-solving, 9, 228 ff,
analyses of, 236
examples of, 342
framework of. 237
importance of, 233
improvement of, 147, 247 ff.
steps in, 229-30
Productivity of thought materials,
255 f.
Psychology in drill procedures, 194 ff.
Punishments, 60
Purposes, 44-47
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Quantitative thinking, 346

Questioning, 316-17
attitude, 254
in problem-solving, 257

Reaction, 86

Readiness, 201
law of, 14

Readinge in problem-solving, 250
Reasoning

development of, 89

in mathematics, 159

Receptors, 99-100
Recreations, 53
Recurring experience, 192
Referents, 71-72, 174
Relationship, 260
Remedial instruction, 275
in problem-solving, 265
Rewards, 60
Root, 162-64

Science, 171
Search model, 239-40
Security, 57-58
Self-esteem, 59
need for, 46
Semantic dimension
examples of, 72-73
meaning of, 71
Semantics, 166 ff,
principles of, 170 ff.

Sensations, 100~101

Senses
definition of, 99
improving use of, 116 ff,
types of, 99

Sensory experience, 239
in concept formation, 80

Sensory learning
applied to mathematics, 99 ff.
in developing concepts, 106
in memorizing, 105
in motivation, 104
in problem-solving, 107-109
psychology of, 102-103
relation to other aspects, 103 ff,

Sensory-motor skill, 9
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Set

in problem-solving, 242, 258
Skill

acquisition of, 341

versus concept, 341
Slow children, 275
Society

study of, 333
Spacial perceptions, 141
Span of apprehension, 241
Step procedures. 265
Stimuli, 101-102
Success

in motivation, 56-57

in prohlem-solving, 264
Sumrnary of lesson, 308
Superstitions in mathematics, 111, 112
Supplementary aids. 310
Nynmibolie response, 81
Svntatic dimension

examples of, 72-73

meaning of, 70
System, 38

Teacher
as psychologist, 249
as technician, 349
importance of, 348
Teaching aids, 65
Teaching by wholes, 286-87
Teaching for meaning, 187

Teaching of mathematics
cutaneous sensations, 132-33
gustatory sensations, 132
Kinesthetic sensations, 132-33
museular skills, 135-36
olfactory sensations, 132
organic sensations, 132- 33
sensory learning, 129 fI.
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Temporal perception, 142
Terms
psychological, 338
Testing hypotheses, 266 ff.
Thinkers, 167-68
Thought
complete act, 32 ff,
reflective, 236
Thought material, 240 ff,
Transfer
examples in teaching for, 222
factors of, 205
maximum, 217 ff,
order of, 345
Transfer of training, 205 ff,

Trial and error, 15

Understanding, 180
example of, 75
in motivation, 63-64
meaning of, 74-75
Understanding of concepts, 145

Verbal instruction
in concept formation, 93

Verbalization, 183

in problem-solving, 252
Verification, 36, 267
Visual aids

as motivation, 48, 54
use of, 93-94

Way of life, 170
\Whole situation, 19

Words
arbitrary nature of, 165
as symbols, 160



